We carry out a study of Sub-Millimeter Galaxies (SMGs) in the AKARI NEP-Deep field using the James Clerk Maxwell Telescope (JCMT) SCUBA-2 850 μm source catalog, released as part of the SCUBA-2 Cosmology Legacy Survey (S2CLS) program. The SCUBA-2 850 μm map has a root mean square (rms) noise of 1.2 mJy beam−1 and covers an area of 0.60 degree2. We find four SMGs which have counterparts to Herschel sources with spectroscopic redshifts in the literature. In addition, three dust obscured galaxies (DOGs) detected in Herschel bands are selected as a comparison sample. We derive IR luminosities of SMGs using the CIGALE code, which are similar to those of high redshift SMGs from previous studies. The contribution of AGN to the total IR luminosity in SMGs (2%–11%) is smaller than the lower limit for the one in DOGs (19%–35%), which is consistent with the expectation from the evolutionary scenario of massive galaxies. We search for SMGs in overdense regions as protocluster candidates and investigate four regions, including candidates around three DOGs. Finally, we argue that follow-up spectroscopic observation for the NEP-Deep field will provide crucial information to understand the role of SMGs in the evolution of massive galaxies.
The present study examines the sintering behaviour and effect of manganese addition both mechanically-blended and mechanically alloyed on Cr-Mo low alloyed steels to enhance the mechanical properties. Mn sublimation during sintering provides some specific phenomena which facilitate the sintering of alloying elements with high oxygen affinity. First step is the optimization of milling time to attain a master alloy with 50% of Mn which is diluted in Fe-1.5Cr-0.2Mo water atomized prealloyed powder by normal mixing. These mixtures are pressed to a green density of 7.1 g/cm3 and sintered at 1120 ºC in 90N2-10H2 atmosphere.