많은 연구에서 기후변화에 따른 화석연료의 문제점을 제시하고 있는 상황에서 신재생 에너지나 대체 에너지 필요성이 요구되고 있다. 바이오 에너지는 대체에너지로서 직접 사용 보다는 다른 공정을 거쳐 자원의 효율화를 높이는 게 중요하다. Torrefaction (반탄화)는 이러한 자원 효율성을 높이는데 효과적으로 하는 공정이다. 반탄화는 주로 200 to 300℃에서 무산소 조건에서 일어나는 공정으로서 열적화학적 전처리 과정이다. 이 공정을 통하여 수분 및 휘발성 유기물 중량을 감소시켜 에너지 밀도를 높일 수 있다. Bergman 등 (2005)은 반탄화 공정에서 온도를 높이면 C/O와 C/H 비율 증가로 인하여 에너지 밀도가 증가 한다고 하였으며 Basu 등 (2014)은 목재의 반탄화를 거친 후 고정 탄화가 증가한다는 연구 결과를 발표하였다. 본 연구의 목적은 왕겨와 커피껍질의 반탄화 과정을 온도변화는 200∼300℃, 체류시간은 20, 40, 60 min을 적용하여 조사하였다. 이를 위하여 반탄화 전 후 물리화학적 특성과 differential thermal analyses (DTA)을 분석하였다. 연구결과, 온도변화가 체류시간보다 더 반탄화에 더 영향을 주었다. 그리고 체류시간 40 min이 농업 부산물인 왕겨와 커피껍질의 재활용으로 적합한 반탄화 조건이었으며 화석연로로 대체하는데 효과적인 실험 결과를 보여 주었다. 물리화학적 특성에서는 휘발성 물질은 왕겨가 70.9%, 커피껍질이 72.2% 이었다. 왕겨와 커피껍질 원료의 발열량은 각각 21.3과 22.5 MJ/kg이었으며 60 min와 300℃에서 반탄화 후 발열량은 29.6과 27.5 MJ/kg이었다. 반탄화에 의한 질량증가는 온도변화와 체류시간, 바이오매스의 특성에 의한 고형물에 의해 결정되었다. Fig. 1은 체류시간 60 min에서 질량증가를 나타내는 그림이며 60 min와 300℃에서 왕겨와 커피껍질의 질량증가는 각각 39.7 wt.%, 32 wt.%이었다. 에너지 밀도는 반탄화 후 잔류탄소함량만으로 추정하였으며 질량증가와 같은 현상인 왕겨가 커피껍질에 비해 높았다. 왕겨와 커피껍질은 농업 부산물로서 커피껍질의 경우 60% 이상 감량화가 일어났음에도 불구하고 에너지밀도의 증가는 큰 차이는 없으나 커피껍질이 왕겨에 비해 상대적으로 에너지 밀도나 고발열량 증가율이 낮은 것은 mass yield와 고발열량 증가율이 적은 영향으로 사료된다. 커피껍질은 왕겨와 비교했을 때 상대적으로 에너지밀도의 증가가 적어 효과가 더 적은 것으로 생각된다.