We have made a comprehensive statistical study on the coronal mass ejections(CMEs) associated with helmet streamers. A total number of 3810 CMEs observed by SOHO/LASCO coronagraph from 1996 to 2000 have been visually inspected. By comparing their LASCO images and running difference images, we picked out streamer-associated CMEs, which are classified into two sub-groups: Class-A events whose morphological shape seen in the LASCO running difference image is quite similar to that of the pre-existing streamer, and Class-B events whose ejections occurred in a part of the streamer. The former type of CME may be caused by the destabilization of the helmet streamer and the latter type of CME may be related to the eruption of a filament underlying the helmet streamer or narrow CMEs such as streamer puffs. We have examined the distributions of CME speed and acceleration for both classes as well as the correlation between their speed and acceleration. The major results from these investigations are as follows. First, about a quarter of all CMEs are streamer-associated CMEs. Second, their mean speed is 413 km s-1 for Class-A events and 371 km s-1 for Class-B events. And the fraction of the streamer-associated CMEs decreases with speed. Third, the speed-acceleration diagrams show that there are no correlations between two quantities for both classes and the accelerations are nearly symmetric with respect to zero acceleration line. Fourth, their mean angular width are about 60°, which is similar to that of normal CMEs. Fifth, the fraction of streamer-associated CMEs during the solar minimum is a little larger than that during the solar maximum. Our results show that the kinematic characteristics of streamer-associated CMEs, especially Class-A events, are quite similar to those of quiescent filament-associated CMEs.
X-ray plasma ejections often occurred around the impulsive phases of solar flares and have been well observed by the SXT aboard Yohkoh. Though the X-ray plasma ejections show various morphological shapes, there has been no attempt at classifying the morphological groups for a large sample of the X-ray plasma ejections. In this study, we have classified 137 X-ray plasma ejections according to their shape for the first time. Our classification criteria are as follows: (1) a loop type shows ejecting plasma with the shape of loops, (2) a spray type has a continuous stream of plasma without showing any typical shape, (3) a jet type shows collimated motions of plasma, (4) a confined ejection shows limited motions of plasma near a flaring site. As a result, we classified the flare-associated X-ray plasma ejections into five groups as follows: loop-type (60 events), spray-type (40 events), jet-type (11 events), confined ejection (18 events), and others (8 events). As an illustration, we presented time sequence images of several typical events to discuss their morphological characteristics, speed, CME association, and magnetic field configuration. We found that the jet-type events tend to have higher speeds and better association with CMEs than those of the loop-type events. It is also found that the CME association (11/11) of the jet-type events is much higher than that (5/18) of the confined ejections. These facts imply that the physical characteristics of the X-ray plasma ejections are closely associated with magnetic field configurations near the reconnection regions.
We have developed a two fluid solar wind model from the Sun to 1 AU. Its basic equations are mass, momentum and energy conservations. In these equations, we include a wave mechanism of heating the corona and accelerating the wind. The two fluid model takes into account the power spectrum of Alfvenic wave fluctuation. Model computations have been made to fit observational constraints such as electron(Te) and proton(Tp) temperatures and solar wind speed(V) at 1 AU. As a result, we obtained physical quantities of solar wind as follows: Te is 7.4 X 10.5 K and density(n) is 1.7 X 107 cm-3 in the corona. At 1 AU Te is 2.1 X 105 K and n is 0.3 cm-3, and V is 511 km s-1. Our model well explains the heating of protons in the corona and the acceleration of the solar wind.
This study was carried out to find out the changes on serum concentrations of estradiol-17β, progesterone in primiparous Duroc, Landrace and Yorkshire sows weaned at 7 or 21 days. Also, we compared the litter size at birth and weaning among the breeds weaned after lactation for 7 or 21 days. The estradiol-17β concentrations among the breeds were 6.9∼8.8 pg/ml and 6.4∼8.8 pg/ml after lactation for 7 or 21 days, respectively. The progesterone concentrations ranged from 0.3 ng/ml to 1.6 ng/ml. Duroc sow showed higher progesterone concentration compared with Landrace and Yorkshire sows weaned after lactation for 7 or 21 days. Also, we found out that litter size at birth and weaning, respectively, did not show any differences between day 7 and day 21 of lactation. From the facts mentioned above, it was suggested that very early weaning systems could work with no apparent adverse effect on prolificacy.