검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        2.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study investigated the effects of pectinase treatment and skin contact time on the quality characteristics of Dae-hong peach wine. Wine was produced with variations in enzyme treatment and skin contact time (1 hour, 2 hours, 1 day, 2 days, and until the completion of fermentation). Enzyme treatment increased the production yield by 6%, as well as ethanol and redness levels, compared to the non-treated control. Volatile components were higher when the skin contact time was 2 hours or 1 day. Results were compared according to enzyme treatment and skin contact time and found to be influenced by methanol and 3-methyl-1-butanol. Enzyme treatment effectively enhanced yields and volatile compound contents. However, skin contact should be concluded a day before 1 day to ensure compliance with methanol legislative requirements. Therefore, our findings show that enzymatic treatment with shorter skin contact time preserves the distinctive characteristics of Dae-hong peaches and ensures the production of safe and flavorful wine.
        4,600원
        3.
        2023.11 구독 인증기관·개인회원 무료
        The safe disposal of high-level radioactive waste has become a prominent global concern, necessitating rigorous safety assessments for deep geological disposal facilities. In Korea, crystalline rock with low-permeability is considered as the host rock for radioactive waste disposal, and fluid flow and solute transport in a low-permeability rock formation predominantly occur through interconnected fracture network. To analyze and predict fluid flow and solute transport behavior within the fractures, a comprehensive understanding of solute mixing at fracture intersections is crucial. However, difficulty in direct observation of the mixing processes occurring within microscale fracture intersections has led only to analytical and numerical studies, which requires thorough experimental study based on direct observations and measurements for a fundamental understanding of the mixing processes in fracture intersections. In this study, elaborate experiments are being prepared and conducted to measure the complex flow velocity/structure and solute concentration at rough-walled fracture intersections, using a microscale visualization technique of micro Particle Image Velocimetry (micro-PIV) system. Most analytical and numerical studies have shown that at high Peclet number (Pe) > 1,000, streamlinerouting model plays a major role in redistributing solutes at the fracture intersection, at which the mixing ratio converges to zero. As opposed to the conventional mixing model, our experiments found the rebounding of the mixing ratio in the inertial flow regime, indicating an enhanced solute mixing at the intersection. Flow visualization has demonstrated that the inertial flow features, such as the development of large-scale eddies and the straightening of main streamlines, enhance the physical mixing of solutes at rough-walled fracture intersections. The findings provide insights into the influence of fracture geometry on flow dynamics and its significant impact on solute mixing at fracture intersections.
        4.
        2016.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Fabrication of iron oxide/carbon nanotube composite structures for detection of ammonia gas at room temperature is reported. The iron oxide/carbon nanotube composite structures are fabricated by in situ co-arc-discharge method using a graphite source with varying numbers of iron wires inserted. The composite structures reveal higher response signals at room temperature than at high temperatures. As the number of iron wires inserted increased, the volume of carbon nanotubes and iron nanoparticles produced increased. The oxidation condition of the composite structures varied the carbon nanotube/iron oxide ratio in the structure and, consequently, the resistance of the structures and, finally, the ammonia gas sensing performance. The highest sensor performance was realized with 500 oC/2 h oxidation heat-treatment condition, in which most of the carbon nanotubes were removed from the composite and iron oxide played the main role of ammonia sensing. The response signal level was 62% at room temperature. We also found that UV irradiation enhances the sensing response with reduced recovery time.
        4,000원