검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 10

        1.
        2023.11 구독 인증기관·개인회원 무료
        Domestic nuclear power plants conduct radiological environmental impact assessments every year in accordance with the Nuclear Safety and Security Commission (NSSC) notice. Among them, gaseous effluents are evaluated for their effects due to inhalation, external exposure in the air, exposure from ground surface deposits, food intake. In order to evaluate the impact of this exposure pathway, an evaluation point for each pathway must be selected. In the case of evaluation points, each country has different evaluation points. In the case of Korea, the evaluation point is calculated on the assumption that one lives 365 days a year at the EAB and consumes food from the nearest production area. In the case of the United States, external exposure and inhalation are evaluated at the site boundary or the nearest residential area, and food intake is evaluated by assuming that food produced in the nearest residential area or the nearest production area is consumed. Currently, the dose evaluation is optimized and selected so that EAB evaluation point for each site includes 16 direction evaluation points for each unit. In the E-DOSE60 program currently under development, the evaluation point was selected by calculating 16 direction x number of units without optimization. The food intake evaluation point was selected as the point that satisfies the minimum farmland area of the U.S. NRC NUREG-1301 and is the shortest distance from the site. The location of the production point from multiple units in included all 16 directions for each unit and quantity of evaluation points was optimized to satisfy the shortest distance. It can contribute to improving the reliability of the E-DOSE60 program currently under development by selecting new evaluation points for evaluating inhalation and external exposure evaluation and selecting optimized dose evaluation points for each site for evaluation by ingestion.
        2.
        2023.05 구독 인증기관·개인회원 무료
        The US NRC developed a program called NRCDose3 to evaluates the environmental impact of radiation around nuclear facilities. The NRCDose3 code is a software suite that integrates the functionality of three individual LADTAP II, GASPAR II, and XOQDOQ Fortran codes that were developed by the NRC in the 1980’s and have been in use by the nuclear industry and the NRC staff for assessments of liquid effluent and gaseous effluent, and meteorological transport and dispersion, respectively. Through the integrated program, it is possible to conduct safety assessment and environmental impact assessment from liquid and gaseous effluent when operating permits are granted. In addition to a more user-friendly graphic user interface (GUI) for inputting data, significant changes have been made to the data management and operation to support expanded capabilities. The basic calculation methods of the LADTAP II, GASPAR II, and XOQDOQ have not been changed with this update to the NRCDose3 code. Several features have been added. The previous program used only ICRP-2 dose conversion factor, but the new program can additionally use dose conversion factor of ICRP-30 and ICRP-72. In the previous program, 4 age groups (infant, child, teen, and adult) were evaluated during dose evaluation, but when ICRP-72 was selected, 6 age groups (infant, 1-year, 5-year, 10-year, 15-year, and adult) could be evaluated. In addition, when selecting ICRP-72, many user-modifiable parameters such as food intake and exposure time were added. It will be referred to E-DOSE60, a program currently under development.
        3.
        2023.05 구독 인증기관·개인회원 무료
        K-DOSE60, a off-site dose calculation program currently used by khnp, is performing evaluation based on the gaseous effluent evaluation methodology of NRC Reg. Guide 1.109. In particular, H-3 and C-14, which are the major nuclides of gaseous effluent, are evaluated using a ratio activity model. Among them, H-3 is additionally evaluating the dose to OBT (Organically Bound Tritium) and HT as well as HTO (Triated water). However, NRC Reg. Guide 1.109 is a methodology developed in the 1970s, and verification was performed by applying the evaluation methodology of H-3 and C-13 presented by IAEA TRS-472 in 2010 to the current K-DOSE60. The IAEA TRS-472 methodology also includes OBT and HT for H-3. In order to apply the ratio radioactivity model presented in IAEA TRS-472, the absolute and relative humidity were calculated using the weather tower of the nuclear site and used for H-3 evaluation. For the dose evaluation of HT, the previously used Canada Chalk River Lab. (CNL) conversion factor was used. For atmospheric carbon concentration, the carbon concentration presented in IAEA TRS-472 was used, not the carbon concentration in the 1970s of NRC Reg. Guide 1.109. It was confirmed that the K-DOSE60, which applied the changed input data and methodology, was satisfied by performing comparative verification with the numerical calculation value.
        4.
        2023.05 구독 인증기관·개인회원 무료
        In 2022 and 2023, the Korea Institute of Nuclear Safety (KINS), a regulatory body, revised the regulatory guidelines for off-site dose evaluation to residents, marine characteristics surveys around nuclear facilities, and environmental radiation surveys and evaluation around nuclear facilities. In addition, the NRC, a US regulatory body, has revised regulatory guide 1.21 (MEASURING, EVALUATING, AND REPORTING RADIOACTIVE MATERIAL IN LIQUID AND GASEOUS EFFLUENTS AND SOLID WASTE) to change environmental programs for nuclear facilities. The domestic regulatory guidelines were revised and added to reflect the experience of site dose evaluation for multiple units during the operation license review of nuclear facilities, the resident exposure dose age group was modified to conform to ICRP-72, and the environmental monitoring plan was clarified. In the case of the US, the recommended guidelines for updating the long-term average atmospheric diffusion factor and deposition factor, the clarification of the I-131 environmental monitoring guidelines for drinking water, and the clarification of the procedures described in the technical guidelines when changing environmental programs have been revised and added. Through such regulatory trend review, it is necessary to preemptively respond to changes in the regulatory environment in the future.
        5.
        2023.05 구독 인증기관·개인회원 무료
        KHNP’s vitrification technology introduced a commercialized vitrification facility to the Hanul nuclear power site after a commercialization test through a lab test and a pilot plant at KHNP-CRI. France’s ANADEC (consortium with CEA, Orano, ECM Technologies and Andra) conducted a feasibility evaluation from FY2018 to FY2021 to apply In-Can vitrification, which was developed to treat Fukushima Effluent Treatment Waste (FETW) such as carbonate slurry and ferric slurry generated from ALPS (Advanced Liquid Processing System-Multi Radionuclides Removal) facilities for waste treatment in Fukushima, Japan. For commercialization, the following method was used. First, through the Laboratory scale studies, the possibility of high waste loading (60wt% in dry mass) of slurry on borosilicate matrix was tested. In addition, the volatility of radionuclide was evaluated through radionuclides surrogates with a Bench-scale mockup and glass discharge (100 kg) was evaluated through In-Can vitrification process verification. The feeding system was improved through a pilot scale test, and finally, glass discharge (300 kg) was evaluated after large amount of waste was treated through an industrial prototype (Fullscale) at the CEA Marcoule site (France).
        6.
        2022.10 구독 인증기관·개인회원 무료
        In accordance with the notification of the Nuclear Safety and Security Commission (NSSC), environmental impact assessments around nuclear power plants are conducted annually and the results are disclosed to the public. The effects of direct radiation exposure from nuclear power plants as well as liquid effluents and gaseous effluents are taken into consideration in the evaluation of dose calculation for residents. In the United States, regulatory guidelines on direct radiation exposure are described in Reg. Guide 4.1, and the effects of direct radiation are evaluated through regulatory guidelines in Korea. We are going to review optimal evaluation method by reviewing the direct radiation exposure evaluation method currently being conducted in domestic nuclear power plants and the direct radiation exposure evaluation method in overseas nuclear power plants such as in the United States.
        7.
        2022.10 구독 인증기관·개인회원 무료
        In 2022, new regulatory guidelines were announced in relation to the off-site dose calculation (ODC), and accordingly, measures to improve the off-site does calculation program (ODCP), kdose60, were reviewed. The main consideration is, first, that if multiple nuclear facilities are operated on the same site, the boundaries of the restricted areas shall be set as the overlapping outer boundaries of the restricted areas determined by calculation for each nuclear facility. Second, the external exposure caused by direct radiation from a number of nuclear facilities in the same site must be partially or fully applied depending on the facility and site characteristics. Third, the dose conversion coefficient should be evaluated by checking whether the effect of the daughter nuclides is properly reflected. Fourth, the soil contamination period is a factor to consider that radioactive substances deposited on the surface, such as particulate nuclides, affect residents over a long period of time. Fifth, due to the recent construction of Shin-Kori Units 5 and 6, there is a change in the site boundary of the Kori/Saeul site, so as the site boundary is expanded, it is required to add an exposure dose assessment point due to gas effluents and change the exposure dose assessment point according to crop intake. Therefore, through this study, the direction for improving the ODCP will be prepared by reviewing the recent revision of the regulatory guidelines.
        8.
        2022.05 구독 인증기관·개인회원 무료
        In accordance with the notification of the Nuclear Safety and Security Commission (NSSC), environmental impact assessments around nuclear power plants are conducted annually and the results are disclosed to the public. KHNP evaluates the dose of residents around nuclear power plants using the K-DOSE60 program that reflects ICRP-60. K-DOSE60 calculates the expected exposure dose for residents by modifying the atmospheric dispersion and deposition factors evaluation module (XOQDOQ), gaseous effluent evaluation module (GASDOS) and liquid effluent evaluation module (LIQDOS) developed by the US NRC. The current evaluation program is the Bounding Assessments method, which evaluates under the assumption that residents reside at the exclusion area boundary (EAB), and has a disadvantage in that the estimated exposure dose is evaluated too conservatively. In the EPRI, instead of the conservative method that is conventionally performed for the residents’ dose evaluation method, a plan to improve the accuracy of the dose evaluation reflecting the site characteristics was reviewed. In addition, improvements were derived through the review of NPPs operation status, experience cases and the latest technology.
        9.
        2022.05 구독 인증기관·개인회원 무료
        The off-site dose calculation is regularly carried out at the nuclear power plants in order to evaluate off-site dose from gaseous and liquid effluent during normal operation. In 2009, the off-site calculation program (K-DOSE60) was developed in accordance with ICRP-60 by KHNP. This software needs meteorological data, gaseous and liquid effluent data, and various other input parameters to evaluate off-site dose. As a result, it takes a certain amount of time for the user to enter accurate input data and verify calculated results, and it is difficult to intuitively determine them because of providing textbased calculated results. Therefore, in this study, the improvement of the calculation program was considered so that a more reliable and effective evaluation could be performed when calculating the off-site dose. The main improvements of the off-site dose calculation program (ODCP) are as follows. First, it is developed as the network-based program to link with meteorological data, and gaseous and liquid effluent data to remove input errors and simplify data transfer. Second, through validation process of input data, input errors are eliminated. Third, the input data and calculated results are visually provided so that the user can easily determine the evaluation results. Fourth, database of input and calculated results is constructed to facilitate evaluation result history management.