검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 10

        1.
        2024.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Currently, off-site dose calculations for nuclear power plants are conducted using a computer program (K-DOSE 60). The program is developed based on the regulatory guidelines of the Korea Institute of Nuclear Safety (KINS), which is a domestic nuclear regulatory agency. In this study, a domestic application of the International Atomic Energy Agency (IAEA) TRS (Technical Reports Series)-472 methodology for 3H and 14C in liquid effluents was studied. The dose-evaluation methods adopted and the program configuration for dose evaluation are described based on 3H and 14C in the liquid-effluent-evaluation module of the computer program. The accuracy of the program is verified by comparing the program-calculated results with hand calculation values. Furthermore, a comparative evaluation with LADTAP II, which is a liquid-effluent-evaluation methodology developed by the U.S. NRC (Nuclear Regulatory Commission), is performed. The result confirms that the program-calculated results for the IAEA TRS-472 methodology are consistent with the hand calculation values. Meanwhile, the result of comparative evaluation with LADTAP II indicates different results depending on the methodology used.
        4,000원
        2.
        2023.11 구독 인증기관·개인회원 무료
        To construct and operate nuclear power plants (NPPs), it is mandatory to submit a radiation environmental impact assessment report in accordance with Article 10 and Article 20 of the Nuclear Safety Act. Additionally, in compliance with Article 136 of the Enforcement Regulations of the same law, KHNP (Korea Hydro & Nuclear Power) annually assesses radiation environmental effects and publishes the results for operating NPPs. Furthermore, since the legalization of emission plans submission in 2015, KHNP has been submitting emission plans for individual NPPs, starting with the Shin-Hanul 1 and 2 units in 2018. These emission plans specify the emission quantities that meet the dose criteria specified by the Nuclear Safety and Security Commission. Before 2002, KHNP used programs developed in the United States, such as GASPAR and LADTAP, for nearby radiation environmental impact assessments. Since then, KHNP has been using K-DOSE60, developed internally. K-DOSE60 incorporates environmental transport analysis models in line with U.S. regulatory guidance Regulatory Guide 1.109 and dose assessment models reflecting ICRP-60 recommendations. K-DOSE60 is a stand-alone program installed on individual user PCs, making it difficult to manage comprehensively when program revisions are needed. Additionally, during the preparation of emission plans and the licensing phase, improvements to KDOSE60’ s dose assessment methodology were identified. Furthermore, in 2022, regulatory guidelines regarding resident dose assessments were revised, leading to additional improvement requirements. Currently, E-DOSE60, being developed by KHNP, is a network-based program allowing for integrated configuration management within the KHNP network. E-DOSE60 is expected to be developed while incorporating the identified improvements from K-DOSE60, in response to emission plan licensing and regulatory guideline revisions. Key improvements include revisions to dose assessment methodologies for H-13 and C-14 following IAEA TRS-472, expansion of dose assessment points, and changes in socio-environmental factors. Furthermore, data such as site meteorological information and releases of radioactive substances in liquid and gaseous forms can be linked through a network, reducing the potential for human errors caused by manual data entry. Ultimately, E-DOSE60 is expected to optimize resident exposure dose assessment and enhance public trust in NPP operation.
        3.
        2023.11 구독 인증기관·개인회원 무료
        In order to evaluate the exposure dose of residents living near nuclear power plants, a Off-site Dose Calculation Program (ODCP) has been developed based on SAP since 2021. The ODCP consists of social environmental factor, atmospheric diffusion factors, liquid/gas dose evaluation, and comprehensive analysis, and was developed by dividing it into functional modules. The offsite dose calculation can be carried out monthly, quarterly, semi-annual, and annual, and resident dose evaluation is conducted by entering air diffusion factors and emissions for each period. It also enables comprehensive evaluation result management by developing history management functions together.
        4.
        2023.05 구독 인증기관·개인회원 무료
        After the Fukushima accident, significant amount of radioactively contaminated waste has been generated with 50~250 m3/day and stored in tanks of the Fukushima Daiichi nuclear power plant site. The contaminated water is treated by various treatment facility such as KURION, SARRY, Reverse Osmosis, and ALPS to remove 62 radioactive nuclides except H-3. For the contaminated water treatment process, massive secondary wastes such as sludge, spent adsorbent, and so on as by-product are being generated by the facilities. In Japan, to treat the secondary wastes, melting technologies such as GeoMelt, In-can vitrification and Cold Crucible Induction Melting vitrification are considered as a candidate technologies. In this study, the technologies were reviewed, and the advantage and disadvantage of each technology were evaluated as the candidate technologies for treatment of the secondary wastes.
        5.
        2023.05 구독 인증기관·개인회원 무료
        A vitrification facility control area is formed to control and monitor the vitrification facility process, and the control system is designed to manage the vitrification facility more safely and effectively. The control system is largely composed of a process control system and an off-gas monitoring system. The process control system is operated so that operation variables can be maintained in a normal state even in normal and transient conditions, and is designed so that the vitrification facility can be stably maintained in the event of an abnormality in the facility. The process control system consists of Programmable Logic Controller (PLC) and Local Control Panel (LCP), which controls and monitors each unit device. In addition, operation variables are provided to the operator so that the operator can manage operation variables during process control in a centralized manner for the operation of the vitrification facility. The off-gas monitoring system is operated to monitor whether the off-gas discharged to the environment is stably maintained within the standard level, and the off-gas is monitored through an independent monitoring system.
        6.
        2023.05 구독 인증기관·개인회원 무료
        After melting glass at a high temperature of about 1,100 degrees in the Cold Crucible Induction Melter (CCIM) of the vitrification facility, radioactive waste is fed into the CCIM to vitrify radioactive waste. Accordingly, since the metal sector of the CCIM contacts the high-temperature molten glass, cooling water is supplied to continuously cool the metal sector. The cooling system is divided into primary and secondary cooling water systems. The primary cooling water flows inside the metal sector of the CCIM to maintain the metal sector within normal temperature, thereby forming a glass layer between the metal sector and the high-temperature melting glass. The secondary cooling system is a system that cools the primary cooling water that cools the metal sector, and removes heat generated from the primary cooling system. In addition, it is designed to stably supply cooling water to the secondary cooling water system through an emergency cooling water system so that cooling water can be stably supplied to the secondary cooling water system in the event of secondary cooling water loss. Therefore, it is designed to maintain the facility stably in the event of loss of cooling water for the CCIM of the vitrification facility.
        7.
        2022.10 구독 인증기관·개인회원 무료
        In 2022, new regulatory guidelines were announced in relation to the off-site dose calculation (ODC), and accordingly, measures to improve the off-site does calculation program (ODCP), kdose60, were reviewed. The main consideration is, first, that if multiple nuclear facilities are operated on the same site, the boundaries of the restricted areas shall be set as the overlapping outer boundaries of the restricted areas determined by calculation for each nuclear facility. Second, the external exposure caused by direct radiation from a number of nuclear facilities in the same site must be partially or fully applied depending on the facility and site characteristics. Third, the dose conversion coefficient should be evaluated by checking whether the effect of the daughter nuclides is properly reflected. Fourth, the soil contamination period is a factor to consider that radioactive substances deposited on the surface, such as particulate nuclides, affect residents over a long period of time. Fifth, due to the recent construction of Shin-Kori Units 5 and 6, there is a change in the site boundary of the Kori/Saeul site, so as the site boundary is expanded, it is required to add an exposure dose assessment point due to gas effluents and change the exposure dose assessment point according to crop intake. Therefore, through this study, the direction for improving the ODCP will be prepared by reviewing the recent revision of the regulatory guidelines.
        8.
        2022.05 구독 인증기관·개인회원 무료
        The off-site dose calculation is regularly carried out at the nuclear power plants in order to evaluate off-site dose from gaseous and liquid effluent during normal operation. In 2009, the off-site calculation program (K-DOSE60) was developed in accordance with ICRP-60 by KHNP. This software needs meteorological data, gaseous and liquid effluent data, and various other input parameters to evaluate off-site dose. As a result, it takes a certain amount of time for the user to enter accurate input data and verify calculated results, and it is difficult to intuitively determine them because of providing textbased calculated results. Therefore, in this study, the improvement of the calculation program was considered so that a more reliable and effective evaluation could be performed when calculating the off-site dose. The main improvements of the off-site dose calculation program (ODCP) are as follows. First, it is developed as the network-based program to link with meteorological data, and gaseous and liquid effluent data to remove input errors and simplify data transfer. Second, through validation process of input data, input errors are eliminated. Third, the input data and calculated results are visually provided so that the user can easily determine the evaluation results. Fourth, database of input and calculated results is constructed to facilitate evaluation result history management.
        9.
        2010.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        가압경수로 원전 농축폐액건조설비(CWDS)에서 생성된 농축폐액건조물에 대한 고화 방안이 국내외적 으로 다양하게 연구되어 왔다. 농축폐액의 고형화는 시멘트, 파라핀 및 폴리머와 같은 고화제를 이용하여 수행되어 왔다. 동시에 농축폐액에 대한 감용비 및 운영상의 효과를 극대화하기 위한 농축폐액건조물 전처 리 방안이 연구되었다. 건조된 분말 형태의 폐기물을 유리화 설비에서 직접 처리할 경우 비산에 의한 배기 체 계통 및 폐기물 투입구 막힘 현상을 초래할 수 있으며, 취급 중 비산에 의한 방사성피폭을 초래할 가능 성이 있다. 본 연구는 분말형태의 폐기물을 유리화설비에서 고화하기 위한 전처리방안을 수립하고 이를 통해 설비운영 및 폐기물 운영관리의 안전성을 확보하는데 목적이 있다.
        4,000원
        10.
        2010.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        가압경수로 원전의 농축폐액건조설비에서 발생된 농축폐액 건조물을 유리화 하는 방안이 연구되어 왔다. 중저준위 방사성폐기물을 유리화할 경우 최종 생성물은 내구성이 우수하고 현저한 부피저감 효과의 장점을 가지고 있다. 붕산농축폐액에 대한 유리화 타당성 연구는 분말시료의 전처리 방법 개발, 유리조성 프로그램을 이용한 유리개발 및 실증시험으로 수행되었다. 분말시료에 대한 전처리 방안으로는 유리화설비에 투입하기 전에 고형성을 갖도록 펠렛화하는 것이다. 농축폐액 성분중 Na와 B의 함량 분포는 유리속에 용융되는 정도와 설비로부터의 폐기물 배출·처리에 영향을 주기 때문에 이를 고려하여 유리조성이 개발되어야 한다. 실증시험에서는 폐기물 투입률, 배기체 특성 및 최종 생성물인 유리고화체의 특성이 검토되었다. 본 연구는 붕산농축폐액에 대한 유리고화체의 물리화학적 특성을 검토하고 유리화 타당성을 확인하는데 목적이 있다.
        4,000원