The dismantling nuclear power plant is expected to continue to change the radiation working environment compared to the operating nuclear power plant. Contamination monitors and survey meters currently in use have limitations in accurate analysis source term and dose rates for continuous changes in radiation fields at dismantling sites. Due to these limitations, the use of semiconductor detectors such as HPGe and CZT detectors with excellent energy resolution and portability is increasing. The CZT detector performs as well as the HPGe detector, but there is no proven calibration procedure yet. Therefore, in this study, the HPGe calibration method was reviewed to derive implications for the CZT detector calibration method. The operating principle of a semiconductor detector that measures gamma emission energy converts them into electrical signals is the same. Two calibrations of HPGe detectors are performed according to the standard calibration procedure for semiconductor detectors for gamma-ray measurement issued by the Korea Association of Standards & Testing Organizations. The first is an energy calibration that calculates gamma-ray peak position measurements and relational expressions using standard source term that emit gamma-rays. The channel values for energy are measured using certified reference source term to determine radionuclides by identifying channels corresponding to the measured peak energy values. The second is the measurement efficiency of measuring the coefficient calibration device, which measures gamma rays emitted from the standard source term. The detector efficiency by sample or distance is measured in consideration of the shape, size, volume, and density of the calibration device. The HPGe detector performs calibration once every six months through a verified calibration method and is being used as a source term analyzer at the power plant. The CZT detector may also establish a procedure for identifying peak positions through energy calibration and calculating radioactivity through efficiency calibration. This will be a way to expand the usability of semiconductor detectors and further monitor radiation in a more effective way.
The Derived Concentration Guideline Level (DCGL) is required to release the facility from the nuclear safety act at the stage of site restoration of the decommissioning nuclear power plant. In order to evaluate DCGL, there are various requirements, and among them, the selection of input parameters based on the application scenario is the main task. Especially, it is important to select input parameters that reflect site characteristics, and at this time, a single deterministic value or a probabilistic distribution can be applied. If it is inappropriate to apply a particular single value, it may be reasonable to apply various distributions, and the RESRAD code provides for evaluation using probabilistic methods. Therefore, this study aims to analyze the difference between the application of the deterministic method and the application of the probabilistic method to the area and thickness of the contaminated zone among the site characteristics data. This study analyzed the thickness and area of the contaminated zone, and in the case of thickness, the deterministic method was applied by changing the thickness at regular intervals from the minimum depth considered by MARSSIM to the thickness of the unsaturated zone identified in previous research data. In addition, a probabilistic analysis was performed by applying a distribution to the thickness of contaminated zone. Second, for the area of the contaminated zone, the dose was evaluated for each area in consideration of the areas to be considered when deriving Area Factor (AF), and the resulting change in DCGL was observed. As a result, the DCGL tends to decrease as the thickness increases, and it seems to be saturated when the thickness exceeds a certain thickness. Therefore, It was confirmed that the level of saturated values is similar to that of entering a probabilistic distribution, and in the case of a parameter that is reasonable to enter as a distribution rather than as a single value, it is sufficiently conservative to perform a probabilistic evaluation. In the case of area change, the DCGL evaluation result showed that the DCGL increased as the scale decreased. The magnitude of the change varies depending on the characteristics of each radionuclide, and in the case of radionuclides where external exposure gamma rays have a major exposure effect, the change is relatively small. It can be seen that the change in DCGL according to the area has the same tendency as the AF applicable to the survey unit for small survey units applied in the final status survey.
Safety-related items in the decommissioning Nuclear Power Plants (NPPs) can largely consider safety for workers and residents. At this time, the effects of radioactive contamination on the Systems, Structures, and Components (SSCs) are caused by the performance of work related to Decontamination and Dismantlement (D&D) activities. Classification according to dismantling activities will be important, and the decay factor of radionuclides and the impact of contaminations due to plant characteristic (thermal and electrical capacity) in estimation of exposure dose from such activities will be considered compared to other overseas NPPs. Therefore, this study will consider some factors to consider for comparison with overseas cases in estimating worker exposure dose. To assess worker exposure doses, the classification of decommissioning activities must first be made. It should be classified including large components that can be generally considered, and the contents should be similar to compare with overseas cases. In case of decommissioned NPPs with prior experience, it is possible to predict worker’s exposure with respect to plant capacity, but this does not seem to have a specific correlation when reviewing the related data. Depending on the plant capacity, the occurrence of contamination of radioactive materials may have some correlation, but it cannot be determined that it has causality with the worker’s dose when dismantling. In addition, it is expected that the effects of workers’ exposure doses will vary depending on when the highly contaminated SSCs will be dismantled from permanent shut down. Therefore, the decay correlation coefficient for this high radiation dose works should be considered. If the high radiation dose work is performed before the base year, a correlation coefficient larger than 1 value will be applied, and in the opposite case, a value less than 1 will be applied. Whether or not to perform Full System Decontamination (FSD) is also an important consideration that affects worker dose, and correlation factors should be applied. In this study, the matters to be considered when estimating worker dose for dismantling NPPs were reviewed. This suggests factors to be reflected in the work classification and dose results for comparison with overseas NPP experiences. Therefore, when doing the workers’ dose estimation, it is necessary to derive a normalized doses considering each correlation factor when comparing with overseas cases along with dose estimation for the dismantling activities.
The decommissioning of the Nuclear Power Plant (NPP) is a long-term project of more than 15 years and will be carried out as a project, which will require project management skills accordingly. The risk of decommissioning project is a combination of many factors such as the decommissioning plan, the matters licensed by the regulatory agency, the design and implementation of dismantling, the dismantling plan and organization, and stakeholders. There will be some difficulties in risk management because key assumptions about many factors and the contents of major risks should be well considered. Risk management typically performs a series of processes ranging from identification and analysis to evaluation. In order to analyze and evaluate risks here, identification of potential risks is the first step, and in order to reasonably select potential risks, various factors mentioned should be considered. Therefore, the purpose of this study is to identify possible risks that should be considered for the decommissioning project in various aspects. The risk of the decommissioning project can be defined using the hazard keyword, and the risk family presented in the IAEA safety series can also be referred. It would be better to approach the radiological or non-radiological risks that may occur in the dismantling work with the hazard keyword, and if the characteristics of the decommissioning project are reflected, it would be a good idea to approach it on a risk family basis. There are 10 top risks in the risk family, 25 risks at the level 2 and 61 risks at the level 3 are presented. It may be complex to consider these hazards and risks recommended as risk families at the same time, so using the results of safety evaluation as input data for risk identification can be a reasonable approach. Therefore, this study intended to derive the possible risks of the decommissioning project based on the risk family structure. At this point, the reflection of the safety assessment results was intended to be materialized by considering the hazards checklist. As a result, this study defined and example of 38 possible risks for the decommissioning project, considering the 10 top risk family and lower level risk categories. This result is not finalized, and it will be necessary to further strengthened through expert workshops or HAZOP in the future.
The nuclear power plant decommissioning project inevitably considers time, cost, safety, document, etc. as major management areas according to the PMBOK technique. Among them, document management, like all projects, will be an area that must be systematically managed for the purpose of information delivery and record maintenance. In Korea, where there is no experience in the decommissioning project yet, data management is systematically managed and maintained during construction and operation. However, if the decommissioning project is to be launched soon, it is necessary to prepare in consideration of the system in operation, what difference will occur from it in terms of data management, and how it should be managed. As a document that can occur in the decommissioning project, this study was considered from the perspective of the licensee. Therefore, the types of documents that can be considered at Level 1 can be divided into (1) corresponding documents, (2) project documents, (3) internal documents, and (4) reference materials. Four document types are recommended based on Level 1 for the classification of documents to be managed in the decommissioning of nuclear facilities. In this study, documents to be managed in the decommissioning project of nuclear facilities were reviewed and the type was to be derived. Although it was preliminary, it was largely classified into major categories 1, middle categories 2, and 3 levels, and documents that could occur in each field were proposed. As a result, it could be largely classified into corresponding documents, project documents, internal documents, and reference materials, and subsequent classifications could be derived. Documents that may occur in the decommissioning project must be managed by distinguishing between types to reduce the time for duplication or search, and the capacity of the storage can be efficiently managed. Therefore, it is hoped that the document types considered in this study will be used as reference materials for the decommissioning project and develop into a more systematic structure.
The domestic Nuclear Power Plant (NPP) decommissioning project is expected to be carried out sequentially, starting with Kori Unit 1. As a license holder, in order to smoothly operate a new decommissioning project, a process in terms of project management must be well established. Therefore, this study will discuss what factors should be considered in establishing the process of decommissioning NPPs. Various standards have been proposed as project management tools on how to express the business process in writing and in what aspects to describe it. Representatively, PMBOK, ISO 21500, and PRICE 2 may be considered. It will be necessary to consider IAEA safety standards in the nuclear decommissioning project. GSR part 6 and part 2 can be considered as two major requirements. GSR part 6 presents a total of 15 requirements, including decommissioning plans, general safety requirements until execution and termination. GSR part 2 presents basic principles for securing the safety of nuclear facilities, and there are a total of 14 requirements. Domestic regulatory guidelines should be considered, and there will be largely laws and regulations related to the decommissioning of nuclear facilities, guidelines for regulatory agencies, and guidelines and regulations related to HSE. The Nuclear Safety Act, Enforcement Decree, Enforcement Rules, and NSSC should be considered in the applicable law for nuclear facilities. Since the construction and operation process has been established for domestic decommissioning project, there will be parts where existing procedures must be applied in terms of life cycle management of facilities and the same performance entity. As a management areas classification in the construction and operation stage, it seems that a classification similar to Level 1 and Level 2 should be applied to the decommissioning project. This study analyzed the factors to be considered in the management system in preparing for the first decommissioning project in Korea. Since it is project management, it is necessary to establish a system by referring to international standards, and it is suggested that domestic regulatory reflection, existing business procedures, and domestic business conditions should be considered.
The decommissioning project of NPP is a large-scale project, with various risks. Successful implementation of the project requires appropriate identification and management of risks. IAEA considered risk management “To maximize opportunities and to minimize threats by providing a framework to control risk at all levels in the organization”. Framework-based risk management allows project managers to identify key areas in which action should be taken at an appropriate time. Also, it enables effective management of projects by supporting decision-making on sub-uncertainty. Risk could be categorized according to the source of the risk. This is called Risk Breakdown Structure (RBS), and is documented as a risk assumption register through a risk identification process. IAEA considers various factors when defining risks in accordance with ISO 31000:2009. IAEA SRS No.97 presents a recommended risk management methodology for the strategy and execution stage of the decommissioning project of nuclear facilities through the DRiMa project conducted from 2012 to 2015. The risk breakdown structure classified in DRiMa project is as follows: (1) Initial condition of facility, (2) End state of decommissioning project, (3) Management of waste and materials, (4) Organization and human resources, (5) Finance, (6) Interfaces with contractors and suppliers, (7) Strategy and technology, (8) Legal and regulatory framework, (9) Safety, and (10) Interested parties. They have various prompts for each category. Such a strategy for dealing with risks has negative risks (threats) or positive risks (opportunities). The negative risks are as shown in avoid, transfer, mitigate and accept. On the other side, the positive risks are as shown in exploit, share, enhance and accept. During the decommissioning, a contingency infrastructure is needed to decrease the probability of unexpected events caused by negative risks. The contingency infrastructure of decommissioning project includes organization, funding, planning, legislation & regulations, information, training, stakeholder involvement, and modifications to existing programs. Since all nuclear facilities have different environmental, physical or contamination conditions, risks and treatment strategies should also be applied differently. This risk management process is expected to proceed at the stage of establishing and implementing a detailed plan for the decommissioning project of each individual plant.
The establishment of processes for the decommissioning a Nuclear Power Plant (NPP) is one of the objects that must be prepared in carrying out the decommissioning project. In particular, in the domestic situation, where there is no experience of decommissioning commercial NPPs, it is necessary to organize the tasks and contents well in advance for the successful initiation of the project. Therefore, this study intends to present a guide-level approach to develop management for domestic decommissioning projects. As a documented template for recognizing a process, there may be a process map and description, and information such as the work structure and the relations between the activities should be indicated. In reality, activities will be managed through a set of computer system, so it would be better if the work content, activity flow, relation, management target information, computerization contents, etc. were materialized in the process. What is important here is to define the management areas and activities and draw the activity flow. Domestically, it has rich experience in construction of NPPs and has a track record of exporting NPPs to the UAE. From these experiences, we have established a framework for standardized work in construction management and construction processes, and are performing them through a computerized system. Since the work of decommissioning has a similar nature to that of construction, we will be able to benchmark the procedure for the decommissioning from the construction management procedures. Typically, in the case of schedule management, the concept and structure of the construction process will be applicable to the decommissioning. Meanwhile, the licensee of domestic decommissioning is the same as the licensee that performs the operation, and the members who will perform the decommissioning also have experience working in the operation period. Therefore, the decommissioning works are an extension of the task during operation. Representatively, there are some processes that can be applied as it is even when decommissioning, such as dismantling work and the safety management process of the radiation zone. Therefore, in carrying out the decommissioning of NPPs in Korea, processes and activities of the management area should be established from the construction processes with abundant experience and the processes during operation. Rather than making a completely new work process, this approach that properly reflects the existing work flow is expected to be an appropriate way to avoid the repulsion of employees and maladjustment to the new environment.