We investigated the cause of liquid crystal alignment when an ion beam is irradiated to the liquid crystal(LC) alignment film for liquid crystal alignment. We investigated liquid crystal alignment in response to changes in ion beam (IB) incident angle and electro-optical (EO) properties of twisted nematic (TN)-liquid crystal displays (LCDs) on polyimide (PI) surface. X-ray photoelectron spectroscopy(XPS) analysis showed that the C=O chemical bond strength decreased with changes in the IB incident angle, while the C-O chemical bond strength increased. Therefore, it was found that the dipole-dipole interaction between C-O chemical bonds and LC molecules has a chemical ordering effect. Good and uniform alignment of nematic LC was observed on the liquid crystal alignment layer surface by IB irradiation, and good EO properties of IB aligned TN-LCD were achieved on the liquid crystal alignment layer surface.
We used Brewster’sLaw to examine the mechanism of liquid crystal(LC) alignment on anorganic insulation layer when subjected to ion-beam irradiation. Brewster’s Law implies that the maximum rate polarized ray on a slanted insulation layers on the substrate and it illustrates the dependence of polarization and the mechanical structure on the ionbeam irradiation process. The pretilt angle of nematic LCs on the organic insulation surface was about 1.13° for an ionbeam exposure of 45° for 1minute at 1800eV. This shows the dependence of LC alignment on the polarization ratio in a slanted organic insulation layer.
Using lanthanum zinc oxide (LZO) film with the ion-beam irradiation, uniform and homogeneous liquid crystal (LC) alignment was achieved. To fabricate the LZO thin film on glass substrate, solution process was conducted as a deposition method. Cross-polarized optical microscopy (POM) and the crystal rotation method reveal the state of LC alignment on the ion-beam irradiated LZO film. Between orthogonally placed polarizers, POM image showed constant black color with regular transmittance. Furthermore, collected incidence angle versus transmittance curve from the crystal rotation method revealed that the LC molecules on the ion-beam irradiated LZO film were aligned homogeneously. Atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) were conducted to reveal the relationship between the ion-beam irradiation and the LC alignment. The ion-beam irradiation changed the LZO film surface to rougher than before by etching effect. Numerical roughness values from AFM analysis supported this phenomenon specifically. XPS analysis showed the chemical composition change due to the ion-beam irradiation by investigation of O 1s, La 3d and Zn 2p spectra. The ion-beam irradiation induced the breakage of chemical bonds in the LZO film surface and this occurred surface chemical anisotropic characteristics for uniform LC alignment.
CD63, a member of tetraspanin membrane protein family, plays pivotal role in cell growth, motility, signal transduction, host-pathogen interactions and cancer. In this work, the cDNA encoding CD63 homologue (TmCD63) was cloned from larvae of coleopteran beetle, Tenebrio molitor. The cDNA is comprised of an open reading frame of 705 bp, encoding putative protein of 235 amino acid residues. In silico analysis shows that the protein has four putative transmembrane domains and one large extracellular loop. The characteristic ‘Cys-Cys-Gly’ motif and ‘Cys188’ residues are highly conserved in the large extracellular loop. Phylogenetic analysis of TmCD63 revealed that they belong to the insect cluster with 50-56% identity. Analysis of spatial expression patterns demonstrated that TmCD63 mRNA is mainly expressed in gut and Malphigian tubules of larvae and the testis of the adult. Developmental expression patterns of CD63 mRNA showed that TmCD63 transcripts are detected in late larval, pupal and adult stages. Interestingly, TmCD63 transcript was upregulated the maximum 4.5 fold in response to DAP-type peptidoglycan during the first 6 h, although other immune elicitors also made significant increase in the transcript level at later time-points. These results suggest that CD63 might contribute to T. molitor immune response against various microbial pathogens.
Background : Cordyceps militaris has been an wonder drug to anti-aging efficacy and called the three main drugs with ginseng and deer antler from the past. Cordycepin, cordycepic acid (d-mannitol) and adenosine are known as functional ingredients in Cordyceps militaris. Among them, cordycepin, the representative component, has been reported as antimicrobial substance containing immune enhancement, anti-cancer and anti-inflammatory effects. Methods and Results : After Cordyceps militaris produced from different types of medium mixed with 10-fold volume of purified water, the mixture were extracted at 70±5℃ for a hour and that extracts re-extracted using ultrasonics wave for 30 minutes. Qualitative analysis of the index component was determined by using the Q-TOF (A quadrupole time-of-flight mass spectrometer), and quantitative analysis was performed by using HPLC (high-performance liquid chromatography) with Xselect HSS T3 column (2.1 X 100 mm, 2.5㎛, Waters, USA) and ultrapure water and acetonitrile as mobile phase A and B. Detection column temperature, injection volume and the flow rate were 35℃, 2 μL and 0.3 mL / minute respectively. The cordycepin content of Cordyceps militaris produced from medium mixed with vegetable and animal ingredients higher than single ingredient. Moreover, through a variety of analyzes by varying the type and content of the medium additives, the cordycepin in Cordyceps militaris produced from medium mixed with animal ingredients highest. Furthermore, the cordycepin content of a fruit body was higher than those of the a mycelium. Conclusion : These results provide a method for producing an high cordycepin content of Cordyceps militaris as functional food ingredient.