검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        2016.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Flexural capacity of a Textile Reinforced Mortar(TRM) was investigated by an experimental study. The test program was accomplished on reinforced concrete(RC) slabs consisted of concrete(average compressive strength of 22.23 MPa) and rebar(strength class of SD400). RC slab had 450 mm and 150 mm in size and 2,600 mm in clear span. Strengthening was accomplished by applying carbon-fiber mesh in layers of mortar. Control slab(unstrengthened) and six slabs strengthened with TRM were fabricated to confirm the reinforcing performance in this study. Test variables considered amount of reinforcement and use of anchorage. As a results, it was validated that the flexural capacity of slabs strengthened with TRM increased from 159.9% to 285.2% according to the amount of TRM compared with unstrengthened slab. Experimental results indicated that there are increase in ductility as well as load carrying and deformation capacities when using multiple layers of textile.
        4,000원
        2.
        1997.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 논문은 복합 적층구조의 최적설계에 있어서 유전알고리즘(GA)의 응용성을 보여준다. 설계점들의 최기집단이 확률론적 과정에 의해 무작위로 생성되고, 설계점들의 개선을 위해 자연선택과 적자생존의 원리가 적용되었다. 유전알고리즘의 범용성 및 신뢰성 검증을 위해 5가지 검증 함수를 고려하였으며, 수치예에서 연속형 및 정수형 그리고 이산형 설계변수를 동시에 갖는 복합 적층 캔틸레버보의 최소 중량 설계가 외부 벌칙함수가 부가된 유전알고리즘에 의해 수행되었다. 설계 문제는 강도, 변위 그리고 고유진동수 제약조건을 포함하면서 다차 비선형성으로 정식화 되었다. 수치예의 결과에 대한 비교분석을 통해 유전알고리즘 탐색 기법이 높은 범용성을 지니면서 양질의 최적해를 매우 효과적으로 찾게됨을 보였다.
        4,000원
        3.
        2013.07 서비스 종료(열람 제한)
        Alfalfa (Medicago sativa L.) is one of the most important forage crops in the world and it’s has been known as the best feed materials for dairy cows and other high valued animals. The new uses of alfalfa are being explored as bio-energy, food, medical and biochemical uses. R2R3-type MYB transcription factors play important roles in transcriptional regulation of anthocyanin biosynthesis. The R2R3-type IbMYB1 is known to be a key regulator of anthocyanin biosynthesis in the storage roots of sweetpotato. We previously showed that the expression of IbMYB1a led to anthocyanin pigmentation in tobacco and Arabidopsis. In this study, we generated transgenic alfalfa plants expressing the IbMYB1a gene under the control of CaMV 35S promoter. Overexpression of IbMYBa in transgenic alfalfa produced strong anthocyanin pigmentation in seedlings and generated a deep purple color in leaves, stems, roots, and even in seeds. High performance liquid chromatography (HPLC) analysis revealed that IbMYB1a expression led to the production of cyanidin as a major core molecule of anthocyanidins in alfalfa, as occurs in the purple leaves of sweetpotato (cv.Sinzami). We also examined expression of several structural genes in the anthocyanin biosynthetic pathway in alfalfa by RT-PCR analysis. In this presentation, we will further present molecular and biochemical characterization in IbMYB1a-overexpression lines. This result shows that the IbMYB1a transcription factor is sufficient to induce anthocyanin accumulation in the forage legume alfalfa plants.