Doublesex and mab-3 related transcription factor (dmrt) play crucial roles in sex determination and sex differentiation in vertebrates and invertebrates. Although dmrt genes have been identified in vertebrates, little is known about aquatic invertebrates. In this study, two dmrt genes, namely, Dc_dmrt93B and Dc_dmrt99B, were identified from brackish water flea, Diaphanosoma celebensis. Transcriptional changes were observed in the dmrt genes when the flea was exposed to bisphenol (BP), an endocrine disruptor. Sequence and phylogenetic analyses showed that both dmrt genes contained two conserved domains, namely, DM and DMA, closely clustered with those of Daphnia spp. Additionally, a significant increase in the Dc_dmrt99B mRNA expression level was observed upon exposure to intermediate concentrations of BP (bisphenol A>bisphenol S=bisphenol F, p<0.05), while the expression of Dc_dmrt93B mRNA was slightly modulated. These findings imply that the two dmrt genes may be involved in sex differentiation of D. celebensis. Furthermore, it was found that the ability of BP to modulate dmrt genes could affect development and reproduction. This study provides a basis for understanding the function of the dmrt genes and the molecular mode of action of BP in small crustaceans.
Probiotics are defined as advantageous microorganisms to human when they are ingested. However, without any protection, the viability of microbes and their adhesive ability to surface of colon decreases through acidic condition such as stomach and intestines. Therefore, many studies have been conducted to figure out to enhance not only the viability of probiotics, but also its adhesion for increasing effect of probiotics. In this study, extrusion method was conducted to encapsulate Enterococcus faecium. E. faecium-alginate solution was injected to CaCl2 solution with regular side air injection. To prevent coagulation of beads, stirring was conducted in CaCl2 solution and encapsulated alginate-Ca2+ microspheres were produced. For optimal encapsulation condition, air pressure was 100 mbar, flow rate of E. faecium solution was 0.02 ml/h and stirring rate was 200 rpm. For mucoadhesive ability, Monolayer of HT-29 cells used as a colon cell and encapsulated cells were inoculated and incubated in 37℃, 5% CO2/95% air atmosphere for 1 h. Encapsulation efficiency of the encapsulation method used in this study was 98.2%. For mucoadhesive test, the concentration of inoculated E. faecium was 9.9×108 CFU/ml and the concentration of adhered E. faecium was 1.6×106 CFU/ml. In conclusion, encapsulation efficiency of extrusion method was high enough to be accepted for this study, however, alginate-Ca2+ microspheres revealed lower adhesive ability compared to expectation. Therefore, it needs further studies to increase adhesive ability with other polymers.