검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 10

        2.
        2012.06 구독 인증기관·개인회원 무료
        Oct4 and Nanog are transcription factors involved in pluripotency of stem cells. In general, Oct4 is up-regulated by Nanog. In previous results, however, Oct4 was differentially regulated by various doses of Nanog in P19 cells. High dose Nanog down-regulated the Oct4 expression. This negative feedback event was performed by DNMT and HDAC through the inhibitor assays (5-AZA-cytidine and trichostatin A). To identify the precise recruited sites for DNMT and HDAC, ChIP assay was performed in differential doses of Nanog. As a result, HDAC1, HDAC2, DNMT3A and Nanog were recruited to CR2, CR3, CR1, and CR4 upon high dose Nanog, respectively. Next, to investigate the differentiation potency of the cells upon high dose Nanog, RT-PCR with specific markers for three germ layers was performed. However, there was no increase for three germ layers in high dose Nanog treated cells except E-cadherin expression. E-cadherin is a specific marker for epithelial cells. Taken together, high dose Nanog induces Oct4 down-regulation and results in differentiating embryonic carcinoma cells to epithelial cell type. These results will be helpful for study on regulation of pluripotency-related genes in embryonic stem cells. * This study was supported by 2012 Post Doctoral Fellowship Program of National Institute of Animal Science, Rural Development Administration, Republic of Korea. This work received grant support from the Agenda Program (No.PJ007577), Rural Development Administration, Republic of Korea.
        3.
        2011.10 구독 인증기관·개인회원 무료
        Oct4 and Nanog are well-known transcription factors related with self renewal of embryonic stem cell. In low-dose of Nanog, transcription of oct4 is increased; however, oct4 is down-regulated upon high-dose of Nanog. There is a negative feedback loop between oct4 and Nanog. To identify this regulation, we generated 4 nested sets for mouse oct4 promoter. Luciferase activities of oct4 were declined upon high-dose Nanog in all constructs. The declined effects of oct4 upon high-dose Nanog were moderated with DNMT and HDAC inhibitors (5-AZA-cytidine and trichostatin A) in 3 constructs (1867, 1346, 754). But, one construct (2179) was only sensitive to TSA. Taken together, these effects were also represented in semi-quantitative RT-PCR and Western blotting data. These data suggest that negative regulation of oct4 gene upon high-dose Nanog would be accomplished by DNMT and HDAC. Further, it will be studied whether these constraining molecules bind to CR1-4 region of oct4 promoter upon low- and high-dose of Nanog.
        7.
        2008.09 구독 인증기관 무료, 개인회원 유료
        형질 전환 동물 생산에는 조직 및 시기 특이적 발현 조절이 가능하다는 장점 때문에 유즙 내로 외부 유전자를 발현시키는 시스템이 널리 이용되고 있다. 유전자 발현 즉, 단백질 생산은 프로모터의 강도뿐만 아니라 mRNA의 안정성에 의해서도 조절된다. 특히, polyadenylation에 의한 poly A의 길이는 in vivo와 올 in vitro에서 mRNA 안정성 및 목적 유전자의 번역효율에 영향을 준다. 본 연구에서는 이러한 mRNA 안정성이 목적 유전자의 발현에 미치는 영향을 알아보기 위해 3'-UTR 염기 서열을 분석하였다. 이 3'-untranslated region(UTR) 내의 poly A signal을 기준으로 putative cytoplasmic polyadenylation element(CPE) 부위와 downstream elements(DSE: U-rich, G-rich, GU-rich)의 염기 서열을 분석하고, 각각의 element를 기준으로 15 종의 luciferase reporter vector를 제작하여, 생쥐 유선 세포주(HC11)와 돼지 유선 세포주(PMGC)에 각각 transfection시킨 후 48시간 동안 배양하고 luciferase 발현량을 분석하였다. PMGC의 경우, luciferase의 발현은 exon 9의 CPE 2,3 및 DSE 1을 포함한 #6 construct에서 유의적으로 높은 발현량을 보였으며, exon 9의 CPE 2, 3과 DSE를 모두 포함하고 있는 #11 construct에서도 유의적으로 높은 발현량을 보였다. 이러한 결과는 형질 전환 돼지 생산에 있어 #6 및 11 construct의 사용은 목적의 유전자를 효과적으로 발현시키는데 기여할 것으로 사료된다.
        4,000원
        10.
        2017.05 서비스 종료(열람 제한)
        Background : The geographical origin of Panax ginseng Meyer, a valuable medicinal plant, is important to both ginseng producers and consumers in the context of economic profit and human health benefits. We therefore aimed to discriminate between the cultivation regions of ginseng using the stable isotope ratios of C, N, O, and S, which are abundant bio-elements in living organisms. Methods and Results : The C, N, O, and S stable isotope ratios were measured by isotope ratio mass spectrometer, and then these isotope ratios profiling was statistically analyzed with chemometrics. The various isotope ratios found in Panax ginseng roots were significantly influenced by region, cultivar, and the interactions between these two factors (P ≤ 0.0002). In particular, δ18O was lower in ginseng roots grown at high altitudes (r = −0.47), while δ34S was higher in ginseng roots grown close to coastal areas (r = −0.48). Chemometric results provided discrimination between the majorities of different cultivation regions. Conclusion : Our case study extends the understanding about the variation of C, N, O, and S stable isotope ratios in ginseng root depending on cultivation region. Hence, the analysis of stable isotope ratios is a suitable tool for discrimination between the regional origins of ginseng samples from Korea, with potential application to other countries.