검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 13

        1.
        2018.11 구독 인증기관·개인회원 무료
        In our previous studies, the cardiac xenotransplantation from an alpha-1,3-galactosyltransferase knockout pig (GT-MCP-MCP) to cynomolgus monkeys showed a mean survival of 38 days. The objective of this study is to genetically upgrade the GT-MCP-MCP pig, to further enhance membrane cofactor protein (MCP) expression and to express an endothelial specific thrombomodulin (TBM). MCP is a complement regulatory protein and TBM is a coagulation inhibitor. As the dicistronic cassette for wild-type-based MCP and TBM concurrent expressions does not show any increase of MCP, we optimized the MCP codon usage (mMCP) and substituted mMCP for MCP. When the mMCP-TBM cassette was transfected to HeLa cells, we were able to find an increased expression of MCP and endothelial cell-specific TBM expression. The cassette was then transfected into ear-skin fibroblasts isolated from one-month-old #23-4 of a GT-MCP-MCP pig, and the cell populations expressing MCP were obtained by MACS cell sorting. We performed a single cell culture of the selected cells, and obtained clones over expressing 90% MCP. The cells of a clone were used as a donor for nuclear transfer and generated GT-MCP/-MCP/mMCP/TBM pig. The transgenic pig was confirmed to be carrying the cells expressing MCP and functioning as an inhibitor against the cytotoxic effect of normal monkey serum, comparable with donor cells. Thus, we believe that the GT-MCP/-MCP/mMCP/TBM transgenic pig would be potential for the prolongation of xenograft survival in the recipients.
        2.
        2018.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Acute vascular rejection has been known as a main barrier occurring in a xenograted tissue of alpha 1,3-galactosyltransferase knock-out (GalT KO) pig into a non-human primate (NHP). Adenosine which is a final metabolite following sequential hydrolysis of nucleotide by ecto-nucleotidases such as CD39 and CD73, act as a regulator of coagulation, and inflammation. Thus xenotransplantation of CD39 and CD73 expressing pig under the GalT KO background could lead to enhanced survival of recipient NHP. We constructed a human CD39 and CD73 expression cassette designed for endothelial cell-specific expression using porcine Icam2 promoter (pIcam2-hCD39/hCD73). We performed isolation of endothelial cells (pAEC) from aorta of 4 week-old GalT KO and membrane cofactor protein expressing pig (GalT-MCP/-MCP). We were able to verify that isolated cells were endothelial-like cells using immunofluorescence staining analysis with von Willebrand factor antibody, which is well known as an endothelial maker, and tubal formation assay. To find optimal condition for efficient transfection into pAEC, we performed transfection with GFP expression vector using four programs of nucleofection, M-003, U-023, W-023 and Y-022. We were able find that the program W-023 was optimal for pAEC with regard to viability and transfection efficiency by flow cytometry and fluorescent microscopy analyses. Finally, we were able to obtain GalT-MCP/-MCP/CD39/CD73 pAEC expressing CD39 and CD73 at levels of 33.3% and 26.8%, respectively. We suggested that pACE isolated from GalT-MCP/-MCP pig might be provided as a basic resource to understand biochemical and molecular mechanisms of the rejections and as an alternative donor cells to generate GalT-MCP/-MCP/CD39/CD73 pig expressing CD39 and CD73 at endothelial cells.
        4,000원
        3.
        2017.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Pig has been known to be one of the most feasible animals as a bioreactor to produce pharmaceuticals in milk and as a mediator in xenotransplantation research. Previously, we generated transgenic pigs for both purposes, which were expressing Factor 8, vWF, hTPA, and hEPO in milk, along with expression of MCP at GalT gene locus (GalT-MCP/-MCP) as well as expressing MCP at GalT gene loci with CD73 expression (GalT-MCP/+/CD73). In this study, we performed comparative analyses of sperm parameters between wild type male (WT) pig and those transgenic males to examine the effects of transgenes integrated into the pigs on motility, morphology, viability, and acrosome integrity of the spermatozoa. Our results showed that the rates of actively motile spermatozoa of WT, Factor 8, vWF, hTPA, hEPO, GalT-MCP/+/CD73, and GalT-MCP/-MCP pigs were 85.0%, 83.3%, 82.5%, 83.3%, 82.5%, 77.5%, and 78.7%, respectively. Whereas, the rates of morphologically normal spermatozoa of WT, Factor 8, vWF, hTPA, hEPO, GalT-MCP/+/CD73, and GalT-MCP/-MCP pigs were 90.0%, 80.0%, 80.0%, 83.3%, 85.0%, 91.8%, and 80.8%, respectively. In addition, the viability in spermatozoa of WT, Factor 8, vWF, hTPA, hEPO, GalT-MCP/+/CD73, and GalT-MCP/-MCP pigs were 93.9%, 82.4%, 89.9%, 83.9%, 87.4%, 92.8%, and 83.6%, respectively. The rates of spermatozoa with normal acrosome integrity in WT, Factor 8, vWF, hTPA, hEPO, GalT-MCP/+/CD73, and GalT-MCP/-MCP pigs were 98.1%, 98.6%, 98.6%, 98.7%, 98.1%, 99.5%, and 95.1%, respectively. There were no significant differences in motility, morphology, viability, and acrosome integrity of the spermatozoa among WT, Factor 8, vWF, hTPA, and hEPO, GalT-MCP/+/CD73, and GalT-MCP/-MCP pigs. These mean that neither random integration nor targeted integration of the transgene into chromosome of pig effect on characteristics of spermatozoa. Ultimately, the transgenic male pigs subjected in this study could apply to propagate their progenies for production of human therapeutic proteins and advancing the xenotransplantation research.
        4,000원
        4.
        2017.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Pigs have been extensively used as mediators of xenotransplantation research. Specifically, the Massachusetts General Hospital (MGH) miniature pig was developed to fix major histocompatibility antigens for use in xenotransplantation studies. We generated transgenic pigs for xenotransplantation using MGH pigs. However, it has not been studied yet whether these pigs show similarity of reproductive physiological characteristics to wild types of MGH miniature pig. In this study we analyzed the estrous cycles and pregnancy characteristics of wild type (WT) and transgenic MGH miniature pigs, which were α1,3-galactosyltransferase (GalT) heterozygous and homozygous knock-out, and membrane cofactor protein (MCP) inserted in its locus, GalT-MCP/+ and GalT-MCP/-MCP pigs. Estrous cycles of WT, GalT-MCP/+ and GalT-MCP/-MCP pigs were 20.9±0.74, 20.1±1.26, and 17.3±0.87 days, respectively, and periods of estrous were 3.2±0.10, 3.1±0.12, and 3.1±0.11 days. The periods of gestation of WT, GalT-MCP/+ and GalT-MCP/-MCP pigs were 114.2±0.37, 113.3±0.67, and 115.4±0.51 days, respectively. Litter sizes of WT, GalT-MCP/+ and GalT-MCP/-MCP pigs were 4.8±0.35, 4.8±1.11 and 3.0±0.32 respectively. There were no significant differences on estrous cycle, periods of estrous and gestation, and litter size among WT, GalT-MCP/+ and GalT-MCP/-MCP pigs, meaning that GalT knock-out and additional expression MCP of the MGH miniature pig did not effect on reproduction traits. These results provide relevant information to establish breeding system for MGH transgenic pig, and for propagation of GalT-MCP/-MCP pig to supply for xenotransplantation research.
        4,000원
        5.
        2017.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Transplantation is considered to be a very useful approach to improve human welfare and to prolong life-span. Heterologous organ transplantation using pig organs which are similar to human beings and easy to make mass-production has known as one of the alternatives. To ensure potential usage of the pig organ for transplantation application, it is essentially required to generate transgenic pig modifying immuno-related genes. Previously, we reported production of heterozygous α 1,3-galactosyltransferase (GalT) knock-out and human membrane cofactor protein (MCP) expressing pig (GalT-MCP/+), which is enforced for suppression of hyperacute and acute immunological rejection. In this study, we reported generation of homozygous pig (GalT-MCP/-MCP) by crossbreeding GalT-MCP/+ pigs. Two female founders gave birth to six of GalT-MCP/-MCP, and seven GalT-MCP/+ pigs. We performed quantitative real-time PCR, western blot, and flow cytometry analyses to confirm GalT and MCP expression. We showed that fibroblasts of the GalT-MCP/-MCP pig do not express GalT and its product Gal antigen, while efficiently express MCP. We also showed no expression of GalT, otherwise expression of MCP at heart, kidney, liver and pancreas of transgenic pig. Taken together, we suggest that the GalT-MCP/-MCP pig is a useful candidate to apply xenotransplantation study.
        4,000원
        8.
        2008.09 구독 인증기관 무료, 개인회원 유료
        형질 전환 동물 생산에는 조직 및 시기 특이적 발현 조절이 가능하다는 장점 때문에 유즙 내로 외부 유전자를 발현시키는 시스템이 널리 이용되고 있다. 유전자 발현 즉, 단백질 생산은 프로모터의 강도뿐만 아니라 mRNA의 안정성에 의해서도 조절된다. 특히, polyadenylation에 의한 poly A의 길이는 in vivo와 올 in vitro에서 mRNA 안정성 및 목적 유전자의 번역효율에 영향을 준다. 본 연구에서는 이러한 mRNA 안정성이 목적 유전자의 발현에 미치는 영향을 알아보기 위해 3'-UTR 염기 서열을 분석하였다. 이 3'-untranslated region(UTR) 내의 poly A signal을 기준으로 putative cytoplasmic polyadenylation element(CPE) 부위와 downstream elements(DSE: U-rich, G-rich, GU-rich)의 염기 서열을 분석하고, 각각의 element를 기준으로 15 종의 luciferase reporter vector를 제작하여, 생쥐 유선 세포주(HC11)와 돼지 유선 세포주(PMGC)에 각각 transfection시킨 후 48시간 동안 배양하고 luciferase 발현량을 분석하였다. PMGC의 경우, luciferase의 발현은 exon 9의 CPE 2,3 및 DSE 1을 포함한 #6 construct에서 유의적으로 높은 발현량을 보였으며, exon 9의 CPE 2, 3과 DSE를 모두 포함하고 있는 #11 construct에서도 유의적으로 높은 발현량을 보였다. 이러한 결과는 형질 전환 돼지 생산에 있어 #6 및 11 construct의 사용은 목적의 유전자를 효과적으로 발현시키는데 기여할 것으로 사료된다.
        4,000원
        9.
        2008.06 구독 인증기관 무료, 개인회원 유료
        Our previous study showed that transgenic (TG) pigs harboring human EPO (hEPO) gene have been shown to have reproductive disorders, including low pregnancy rates, irregular estrus cycle and low little size. To investigate these reasons, we assessed estrus behavior (standing response) and plasma 17B-estradiol (E2) level, which partly reflect reproductive function, during the estrus cycles after synchronization and superovulation by hormone treatments. Then, we analysed blood composition and expression of hEPO gene in TG pigs. Pigs were injected with PG600. After 10 days, pigs were fed with Regumate porcine for 6 days. Blood samples were collected from jugular vein. Analysis of blood composition and E2 level were measured by Hemavet 950 and E2 ELISA kit, respectively. And, the expression of hEPO gene in reproductive organs was quantitated by real-time RT-PCR. The percentage of estrus behavior in TG was significantly decreased. Hematocrit (HCT), hemoglobin (Hb) concentration and red blood cell (RBC) number were significantly higher in TG than wild type (WT). On the other hand, high expression of hEPO gene in TG was observed in the mammary gland as well as in the uterus. Moreover, plasma E2 level was significantly higher in TG than WT. These results suggest that nonspecific expression of hEPO gene in the other organs of TG may affect blood composition and plasma E2 level, thereby causing reproductive disorders.
        4,000원
        13.
        2006.06 구독 인증기관 무료, 개인회원 유료
        This study was conducted to examine the effect of IRES controlled reporter gene on screening and production of recombinant human erythropoietin (EPO) proteins from cultured CHO cells. The cDNA was cloned for EPO from human liver cDNA. Using site-directed mutagenesis, we generated recombinant human EPO (rhEPO) with two additional N-glycosylations (Novel erythropoiesis-stimulating protein: NESP). Wild type hEPO and NESP were cloned into expression vectors with GFP reporter gene under regulatory control of CMV promoter and IRES so that the vectors could express both rhEPO and GFP. The expression vectors were transfected to cultured CHO-K1 cells. Under microscopy, expression of GFP was visible. Using supernatant of the culture, ELISA assay, immunocytochemistry and in vitro assay using EPO dependant cell line were performed to estimate biological activity to compare the production characteristics (secretion levels, etc.) between rhEPO and NESP. The activity of NESP protein, obtained by mutagenesis, was described and compared with its rhEPO counterpart produced under same conditions. Although NESP had less secretion level in CHO cell line, the biological activity of NESP was greater than that of rhEPO. These results are consistent with previous researches. We also demonstrated that rhEPO and GFP proteins expressed simultaneously from transfected CHO cell line. Therefore we conclude that use of GFP reporter gene under IRES control could be used to screen and produce rhEPO in cultured CHO cells.
        4,000원