Broad bean wilt virus 2 (BBWV2) is a species in the genus Fabavirus and family Secoviridae, which is transmitted by aphids and has a wide host range. The BBWV2 genome is composed of two single-stranded, positive-sense RNAs, RNA-1 and RNA-2. The representative symptoms of BBWV2 are mosaic, mottle, vein clearing, wilt, and stunting on leaves, and these symptoms cause economic damage to various crops. In 2019, Perilla fructescens leaves with mosaic and yellowing symptoms were found in Geumsan, South Korea. Reverse-transcription polymerase chain reaction (RTPCR) was performed with specific primers for 10 reported viruses, including BBWV2, to identify the causal virus, and the results were positive for BBWV2. To characterize a BBWV2 isolate (BBWV2-GS-PF) from symptomatic P. fructescens, genetic analysis and pathogenicity tests were performed. The complete genomic sequences of RNA-1 and RNA-2 of BBWV2-GS-PF were phylogenetically distant to the previously reported BBWV2 isolates, with relatively low nucleotide sequence similarities of 76-80%. In the pathogenicity test, unlike most BBWV2 isolates with mild mosaic or mosaic symptoms in peppers, the BBWV2-GS-PF isolate showed typical ring spot symptoms. Considering these results, the BBWV2-GS-PF isolate from P. fructescens could be classified as a new strain of BBWV2.
토마토반점위조바이러스 (TSWV)는 고추, 토마토 등 경제적으로 중요한 작물에 심각한 피해를 주는 바이러스들 중 한 종이다. TSWV의 넓은 기주범위, 매개충인 총채벌레 방제의 어려움 및 TSWV의 효과적인 치료제가 없기 때문에, 저항성 품종을 사용하는 것이 TSWV를 예방하는 가장 효과적인 수단이 될 수 있다. 본 연구에서는 토마토에서 분리된 TSWV 분리주 (SW-TO2)의 유전학적·생물학적 특성을 구명하고, 최근에 국내에서 분리된 구기자, 머위, 당귀 TSWV 분리주와 비교하였다. 순수분리된 SW-TO2는 28 종의 지표식물 중 토마토를 포함한 17종에서 원형반점, 모자이크 증상 등 전신감염 증상을 보였다. SW-TO2의 유전자 계통분석 결과 국내에서 분리된 고추, 구기자 TSWV 분 리주와 98~99%의 상동성을 보이며 같은 그룹에 속하였다. TSWV 저항성 평가를 위한 생물검정법을 확립하고, 시판되고 있는 고추와 토마토 품종을 대상으로 4종의 TSWV 분리주에 대한 저항성 평가를 검정하였다. TSWV 저항성 평가는 첫째, 접종엽에 괴사반점 증상이 나타나거나 병징이 없는 경우, 둘째, 상엽에 병징이 없는 경우, 셋째, 상엽을 RT-PCR 진단한 결과 음성이 나왔을 경우 등 3가지 조건이 다 충족될 때 저항성으로 평가하였다.
Geminiviruses are plant-infecting viruses with monopartite or bipartite single-stranded circular DNA genomes. They are known to be mediated by insects such as whiteflies, treehoppers, leafhoppers or aphids and can cause devastating plant diseases in a wide range of economically significant crops worldwide. In Korea, occurrence of geminiviruses were reported officially after the 2000s. Although Honeysuckle yellow vein virus (HYVV) and Sweet potato leaf curl virus (SPLCV) were identified from honeysuckle and sweet potato in 2004 and 2006 respectively, these viruses did not spread and cause much concern for geminiviruses. In 2008, Tomato yellow leaf curl virus (TYLCV) that has caused severe tomato production loss in many subtropical and tropical countries was first reported in tomato plants cultivated in Tongyeong. TYLCV rapidly spread through the country and has been continuously reported from tomato cultivating areas in Korea. In addition to TYLCV, Tobacco leaf curl virus and Sweet potato golden vein associated virus have occurred. In recent years, new geminiviruses including Papaya leaf curl Guangdong virus (PaLCGdV) and Euphorbia leaf curl virus (EuLCV) have been introduced. Newly emerging geminiviruses from tropical and subtropical countries are due to increased demand for various fruits and vegetables, and climate change. In addition, there are reports that some geminiviruses including TYLCV can be transmitted by infected seeds. Therefore it is important to study on epidemiology of virus introduction and spread among the countries and within country.
Loop-mediated isothermal amplification (LAMP) is a rapid, specific, cost-effective detection method by amplifying nucleic acid under isothermal conditions. In this study, we used LAMP for detection of Hamiltonella defensa that lives as a facultive endosymbiont of whitefly ‘Bemisia tabaci’. We designed the Hamiltonella-specific primers by targeting 16S ribosomal RNA gene and validated the specificity of one primer set. To find the optimum temperature for our primer set, the LAMP reaction was held at the temperature, 60℃, 62℃ and 65℃. As a result, 62℃ was the optimum reation temperature for LAMP reaction. Specificity of primer set was tested by the reaction to both Trialeurodes vaporariorum and B. tabaci. After the whole procedure, the amplicons by LAMP were visualized by adding SYBR Green to the reaction tube.