Caprine cryptosporidiosis mainly occurs in young goats, with morbidity rates of 80%–100% and mortality over 50% in goat kids. However, limited research has been conducted on the impact of Cryptosporidium parvum, a diarrhea-causing pathogen, on the intestinal microbiota of goat kids. In this study, 16S rRNA-based metataxonomic analysis was performed to compare the microbial diversity and abundance of the gut microbiota between C. parvum-infected and uninfected goat kids. In total, 12 goat fecal samples were collected, including seven naturally C. parvum-infected and five uninfected goats from Chungcheongbuk-do, Korea. After amplification of the V3–V4 hypervariable region of the bacterial 16S rRNA, high-throughput sequencing was performed. The results showed differences in the microbial composition between C. parvum-infected and uninfected groups based on beta diversity. Firmicutes and Bacteroidetes were the most dominant phyla in both groups. However, no significant difference was observed in the Bacteroidetes/Firmicutes ratio between the two groups. Compared with the uninfected group, the C. parvum-infected group showed significantly higher abundances of Tyzzerella nexillis, Lactobacillus johnsonii, Butyricicoccus pullicaecorum, Enterococcus raffinosus, Enterococcus faecalis, and Negativicoccus massiliensis, and significantly reduced abundances of Aerococcus vaginalis, Faecalicoccus pleomorphus, Oribacterium parvum, and Coprococcus comes. These findings indicate that C. parvum infection, which is associated with diarrhea in neonatal goats, induces alterations in the caprine gut microbiota.
A seasonal chigger-borne disease surveillance program was established at Geoje in March, April, October, and November, 2023. Three species of 45 wild rodents were collected by using Sherman traps, including Apodemus agrarius (Species Ratio; SR 88.9%), Crocidura spp. (SR 8.9%), Micromys minutus (SR 2.2%) in Geoje, 2023. A total of 2,597 chiggers were collected from three species of the rodents in Geoje. The chigger mites were collected from A. agrarius (Chigger Index; CI 64.9) and C. spp. (CI 0.3) for Geoje. In the collection environments, a total number of 734, 659, 172, 520, and 512 chiggers were collected from a reservoir, a ditch, a rice paddy, a field, and a hill, respectively. In the results of the isolation of Orientia tsutsugamushi from the chigger mites, no pathogens were detected from the DNA of the 62 pools of the mites using a Polymerase Chain Reaction method in 2023.
The vector mosquito surveillance is important when recommending prevention and control measures. The surveillance of the vectors were conducted at a total of 7 locations with light emitting diode (LED traps) and BG-Sentinel traps from March to November, 2023 in Gyeongnam province. In the surveillance, a total of 13 species belonging to seven genera were collected in a total of 6,537 females and 51.9/trap/night (Trap Index; TI) in 2023. Among the collection sites, Gangseo-gu at the pigsty in Busan with a LED trap recorded the highest TI 60.6 (Species Ratio; SR 65.6%) for Culex tritaeniorhynchus females in 2023. Each one of Cx. tritaeniorhynchus female was firstly collected for 2023 at Eulsukdo in Busan at 22th March. In the results of isolation of viral RNA, Flavivirus were positive in one pool (Chaoyang virus; 30 individuals) of Aedes vexans and negative in 341 pools (4,152 individuals) of 12 mosquito species including Cx. tritaeniorhynchus, Cx. pipiens, Aedes vexans, Ae. albopictus, and Ochlerotatus togoi in 2023.
A tick survey was conducted to monitor ticks using tick traps attached dry ice method at each four sites in Ulju and Gimhae counties, Gyeongsangnam-do from April to November, 2023. Two species belonging to one genera were collected with tick traps. A total of 1,064 ticks were collected as Haemaphysalis longicornis (Trap Index; TI 11.0), Haemaphysalis flava (TI <0.1) in Ulju and A total of 843 ticks were collected as Haemaphysalis longicornis (Trap Index; TI 8.7), Haemaphysalis flava (TI 0.1) in Gimhae 2023. Haemaphysalis longicornis was the most frequently collected, representing 99.2% in Ulju, 98.9% in Gimhae. In the collection environments, a total number of 685, 268, 64, and 47 ticks were collected from a glassland, a copse, a mountain path, and a grave of Ulju a total number of 469, 216, 83, and 75 ticks were collected from a glassland, a copse, a Grave, and a mountain path of Gimhae respectively. In the results of the isolation of Severe Fever with Thrombocytopenia Syndrome (SFTS) from the ticks, no pathogens were detected from RNA of 101 pools (Ulju), 98 pools (Gimhae) of the ticks using a Polymerase Chain Reaction method in 2023.
먹노린재 합성집합페로몬 후보물질 12종에 대한 유인력을 평가하였다. 페로몬 방출기는 4구 후각계 (Olfacomter)를 사용하였고 4개의 진공관에 각각 후보물질을 투입 후 진공 유압 방식으로 방출하여 포집기에 유인되는 먹노린재의 개채수를 측정하는 방법으로 검정하였다. 4구 후각계 페로몬 평가 방법은 기존 Y-관 후각 계의 문제점인 양방향 선택성과 공간 한정성을 개선하여 평가의 정확성을 향상시켰다. 유인력 평가 결과 12종의 유인제 후보물질 중 Trans-2-Decenal이 먹노린재 실험개체에 대하여 100% 유인력을 보였다. 또한, 선별된 Trans-2-Decenal의 먹노린재 유인력에 대한 유효농도 시험을 진행 한 결과, 50%의 농도에서 유인력이 가장 높았 다. 본 연구를 통해서 선별된 Trans-2 Decenal은 기존의 노린재과에 대한 페로몬 트랩에 비해 먹노린재에 대한 유인 효과가 높을 것으로 사료되었다. 이에 따라, Trans-2 Decenal을 기반으로 한 페로몬 트랩이 상용화된다면 추후의 먹노린재 방제 효과가 높아질 것으로 기대된다.
Pyrethroid resistance in cockroach populations has been a public health challenge since the 1950s. The pyrethroid resistance in the German cockroach, Blattella germanica, is primarily attributed to knockdown resistance (kdr) mutations (E434K, C764R, and L993F) in the voltage-sensitive sodium channel gene (vssc). In this study, the pyrethroid resistance state of the German cockroach in the Republic of Korea (ROK) was assessed by analyzing the frequencies of kdr mutations using one-step PCR with total RNA. The results revealed that among the 25 populations examined, 14 populations exhibited the L993F kdr mutation, while no other mutations were detected. Since other cockroach species are also commonly found in human dwellings in ROK, the vssc genes were cloned from four other species, including Blattella nipponica, Periplaneta americana, Periplaneta japonica, and Periplaneta fuliginosa. Based on the genomic DNA (gDNA) sequences obtained from the vssc cloning, primer sets were designed to amplify the vssc fragment spanning the L993F mutation for each species and used to monitor the development of pyrethroid resistance in cockroach populations in the ROK. The study will facilitate the implementation of a nationwide monitoring program to assess cockroach resistance and select suitable alternatives.
Background: Sperm quality and the number of sperm introduced into the uterus during artificial insemination (AI) are pivotal factors influencing pregnancy outcomes. However, there have been no reports on the relationship between sperm concentration at AI and sperm quality in Hanwoo cattle. In this study, we examined sperm quality and pregnancy rates after AI using sperm inseminated at different concentrations. Methods: We evaluated the motility, viability, and acrosomal membrane integrity of sperm at different concentrations (10, 15, 18, and 20 million sperm/straw) in 0.5-mL straws. Subsequently, we compared the pregnancy rates after AI with different sperm concentrations. Results: After freeze-thawing, sperm at the assessed concentrations showed similar viability and acrosomal membrane integrity. After AI, cattle in the 10 million group had significantly lower pregnancy rates compared to those in the 18 and 20 million groups. Conversely, there were no statistically significant variances observed between cattle in the 10 and 15 million groups. Conclusions: Sperm at concentrations of 10, 15, 18 and 20 million per straw exhibited comparable motility, viability, and acrosomal membrane integrity. However, a concentration of at least 18 million sperm per straw is required to achieve a consistent rate of pregnancy rate in Hanwoo cattle after AI.
Glutamate-mediated oxidative stress causes neuronal cell death by increasing intracellular Ca2+ uptake, reactive oxidative species (ROS) generation, mitogen-activated protein kinase (MAPK) activation, and translocation of apoptosis-inducing factor (AIF) to the nucleus. In the current study, we demonstrated that corydaline exerts potent neuroprotective effects against glutamate-induced neurotoxicity. Treatment with 5 mmol/L glutamate increased cellular Ca2+ influx, ROS generation, MAPK activation, and AIF translocation. In contrast, corydaline treatment decreased cellular Ca2+ influx and ROS generation. Western blot analysis revealed that glutamate-mediated MAPK activation was attenuated by corydaline treatment. We further demonstrated that corydaline treatment inhibited the glutamate-mediated translocation of AIF to the nucleus. We propose that corydaline is a promising lead structure for the development of safe and effective neuroprotectants.
Molten Salt Reactor (MSR) is one of the 4th generation nuclear power systems which is its verified technology in physically and chemically. Among the various salts used for MSR system, the eutectic composition of NaCl-MgCl2 system maintains the liquid state at around 450°C, in the same time, it has high solubility for nuclear fuel chlorides. This characteristic has high advantage for lowering the operating temperature for the MSR, which could reduce the problem of hightemperature corrosion by salt for structural materials significantly. In particular, since MgCl2 has the similar standard reduction potential with nuclear fuel, is used as a surrogate for, many basic researches have been conducted for verifying characteristic of MgCl2. It is well-known that main short-advantage of MgCl2 is hygroscopic properties. MgCl2 changes to MgCl2-xH2O state easily by absorbing moisture in air condition. The hydrated MgCl2 is producing MgOHCl by thermally decomposing at high temperature, the formed MgOHCl corrodes structural materials, even small amount of MgOHCl gives significant damage. Therefore, the purification of MgCl2 has been required for long-term operation of MSR using MgCl2 as a base salt. In this study, the purification of eutectic composition salt for NaCl-MgCl2 has been mainly performed by considering its thermodynamic properties and electrochemical characteristic, and the experimental results have been discussed.
It has been investigated on the management of Strontium-90 in KAERI. It is needed to separate the solute from the salt solution for the recovery of strontium after the chlorination of the strontium oxide in molten salt. A vacuum distillation technology was used for the separation of strontium from the molten salt in our previous study. Strontium chloride was successfully carbonated by reactive distillation of SrCl2 – K2CO3 – LiCl – KCl system. In this study, it was tried to develop another route to recover strontium from the salt solution by a solid-solid reaction for avoiding the entrainment of product and the salt-K2CO3 reaction. Reactive distillation experiments were carried out for SrCl2 - K2CO3 – LiCl – KCl system. The carbonation temperature and pressure were 520°C and 0.8 bar. After the carbonation reaction, the temperature was elevated to 820°C to remove KCl from the reaction product. SrCO3 and KCl peaks were found in the XRD analysis of the residual product. It could be concluded that SrCl2 can be successfully carbonated after salt removal by the solid-solid reaction.
먹노린재의 방제시기 설정을 위하여 서식지 내 발생 양상을 조사하였다. 전라남도를 중심으로 돌발 대량 발생 한 먹노린재의 발생 조사는 2023년도 벼의 모내기가 완료된 시점부터 전남 곡성군 석곡면과 여수시 화양면 일대 의 친환경단지에서 주 1회 실시하였으며, 벼의 수확이 완료되는 시점까지 진행될 예정이다. 금년도 발생 조사 결과는 지난 2021년도 결과와 비교하여 분석하고자 하였다. 현제까지의 결과, 여수시의 친환경단지 내 먹노린재 의 발생은 모내기가 완료된 이 후 2주 경과 시점에서 발견되었으며, 곡성군은 4주 경과 시점에서 발견되었고, 발생 최고점은 여수시의 경우 모내기 후 6주 경과 시점으로, 곡성군의 경우 5주 경과 시점으로 나타났다. 먹노린재 의 대발생이 지속되던 2021년도의 결과와 비교하였을 때, 2023년도 결과도 유사한 것으로 나타났다. 이에 따라, 먹노린재 친환경제재 살포 시기는 모내기 후 2주 경과 시점이 적절한 것으로 나타났으며, 2차 방제 시점에 대해서 는 추가 조사를 통해서 제안하고자 한다.
Decommissioning plan of nuclear facilities require the radiological characterizations and the establishment of a decommissioning process that can ensure the safety and efficiency of the decommissioning workers. By utilizing the rapidly developed ICT technology, we have developed a technology that can acquire, analyze, and deliver information from the decommissioning work area to ensure the safety of decommissioning workers, optimize the decommissioning process, and actively respond to various decommissioning situations. The established a surveillance system that monitors nuclide inventory and radiation dose distribution at dismantling work area in real time and wireless transmits data for evaluation. Developed an evaluation program based on an evaluation model for optimizing the dismantling process by linking real-time measurement information. We developed a technology that can detect the location of dismantling workers in real time using stereovision cameras and artificial intelligence technology. The developed technology can be used for safety evaluation of dismantling workers and process optimization evaluation by linking the radionuclides inventory and dose distribution in dismantling work space of decommissioning nuclear power plant in the future.
Laser cutting technology capable of remote cutting is being developed to reduce radiation exposure to workers and minimize secondary waste generation when dismantling highly polluted nuclear power plant facilities (reactors, pressurizers, steam generators, coolant pumps, etc.). Laser cutting proceeds in air or water, and at this time, secondary products containing radioactive materials are inevitably generated. In air cutting, dust and aerosol are generated, and in underwater cutting, aerosol, water vapor, dispersed particles (colloid, suspension), sediment (dross, sediment), and radioactive waste liquid are generated. Dispersed particles float in the form of fine particles in water, increasing the turbidity of water as cutting progresses, hindering work, and aerosols contain micrometer-sized particles together with water vapor, which can threaten the safety of workers. Particles dispersed in water and aerosol are within 10% of the mass ratio among secondary products, but the volume they occupy is very large, which can have a significant impact on the environment as well as a burden on treatment capacity. Various characterization methods are being developed to diagnose the generation mechanism and physical and chemical properties of laser cutting secondary products in real time and to secure technologies for collecting and removing dispersed particles and aerosols in water. This study introduces a real-time laser cutting secondary product characteristic evaluation method that can identify the key mechanisms of secondary product generation by analyzing the plasma formation process on laser cutting surface and behavior of aerosol, underwater dispersed particles produced by secondary products, as well as physical and chemical properties in real time with various measurement technologies such as Optical Emission Spectrometer (OES), Particle Size Analyzer (PSA), Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), Energy-dispersive X-ray spectroscopy (EDX), Transmission electron microscopy (TEM) and Inductively Coupled Plasma Time-of-Flight Mass Spectrometry (ICP-TOF-MS).
It has been investigated on the management of the nuclides in KAERI. Strontium-90 is a high heatgenerating nuclide in spent nuclear fuel. It is needed to separate the salt from the salt solution for the recovery of strontium after the chlorination of the strontium oxide in molten salt. A vacuum distillation technology was used for the separation of strontium from the molten salt. It was investigated on operating conditions of reactive distillation process for the recovery of the strontium from the salt solution. At a reduced pressure, considerable amount of the carbonation agents such as K2CO3 and Li2CO3 were reduced during heating in the distiller due to the thermal decomposition. Therefore, the two step process was proposed, which is composed of a reaction step at an atmospheric pressure and a salt distillation step at a reduced pressure. In the reaction step, the condition of low temperature and high pressure is suitable to suppress the decomposition of the carbonation agent. In the salt distillation step, reduced pressure is preferable at a suitable temperature depending on the evaporation rate of the salt.