Li reacts with N2 at room temperature. In order to activate Li, the mechanical milling of Li with stable metal oxide, namely, Al2O3 and MgO, using a high energy vibrating ball mill was performed. In the case of Li-MgO system, it reacts with N2, but hardly reacts with O2. The reaction with N2 generally produces Li3N, while for some vigorous reactions the Mg3N2 is produced as the major phases. In the case of Li-Al2O3 system, reactivities with both N2 and O2 are high. The difference is explained in terms of the reaction mechanism and the Li state.
We are undertaking an extra-solar planet search around G-type giant stars by means of Doppler technique using an iodine absorption cell installed to the high dispersion echelle spectrograph for the 188 cm reflector at Okayama Astrophysical Observatory (Okayama Planet Search Program, OPSP). Having detected the first planet candidate (Sato et al. 2003)the search has been proved very promising. Taking advantage of this success, we are trying to develop OPSP to an international collaborative work. We here report the current status of our efforts for establishing such collaborations, namely, those with Chinese and Korean astronomers. We also propose to establish an East-Asian network to search for extra-solar planets around G-type giant stars with the transit detecting technique as well as the Doppler technique, asking other persons/groups to join us to enjoy the planet search.
We reexamined CDM texture large-scale structure (LSS) formation model. We confirmed that texture model is consistent with 4-year COBE data both in an open and a critical matter density (Ω0 = 1) universes, and then obtained normalization for density perturbation power spectrum. We next compare the power spectrum with LSS observation data. Contrary to the previous literature, we found that texture model matches with these data in an open universe no better than in an Ω0 = 1 universe. We also found that the model is more likely to fit these data in a cosmological constant dominated (Λ-) universe.