We detected bright mid- to far-infrared emission from the helium nova V445 Puppis in the AKARI all-sky survey data taken in 2006. Assuming an optically thin condition, we decomposed the spectral energy distribution (SED) of V445 Puppis in October 2006 by model tting and found that the SED can be explained by a combination of cold amorphous carbon (125 K and the mass of 4:5+6:6 2:7 X 10-4 M⊙) and warm amorphous carbon (250 K and the mass of 1:8+1:0 -0:5 X 10-5 M⊙). Assuming that the former is pre-existing dust formed in the past nova outbursts and the latter is newly formed dust in December 2000's nova wind, this result suggests that the amount of dust formed around V445 Puppis in a single outburst is larger than 10-5 M⊙, which is larger than those in any other classical novae ever reported.
Li reacts with N2 at room temperature. In order to activate Li, the mechanical milling of Li with stable metal oxide, namely, Al2O3 and MgO, using a high energy vibrating ball mill was performed. In the case of Li-MgO system, it reacts with N2, but hardly reacts with O2. The reaction with N2 generally produces Li3N, while for some vigorous reactions the Mg3N2 is produced as the major phases. In the case of Li-Al2O3 system, reactivities with both N2 and O2 are high. The difference is explained in terms of the reaction mechanism and the Li state.
SMC(Soft Magnetic Composite) materials which we have newly developed were studied for their applying effects. It shows almost the same motor output power as the laminated Si-steels of 0.35mm in thickness, although core loss of SMC is about 1.5 times that of the laminations. As shown in the results, the SMC motor core is sufficient for real use as a motor core. Furthermore, a 3-D shaped motor core made of SMC can improve approximately 20% of the output compared with the same size motor made of laminations.
Machinability and machining mechanism were examined in the case where resin impregnation treatment was conducted to the Mo-Co hardening particle dispersed iron-based sintered alloy. As a result, the force required for machining decreased significantly compared with the case where resin impregnation treatment was not conducted. This effect is considered to be attributable to the embrittlement of cutting chips produced by the minimization of the cut material deformation.