PURPOSES : This study proposes a methodology to collect data necessary for microlevel emission estimation, such as second-by-second speeds and road grades, and to accordingly estimate emissions. METHODS: To ease data collection for microlevel emission estimation, a vehicle equipped with speed- and location-recording instruments as well as equipment for measuring road geometry was used. As a case study, this vehicle and the proposed methodology were used on a 10- km-long highway in Yongin City, Korea. Emissions from the vehicle during driving were estimated in various microscale driving conditions. RESULTS : Differences in the estimated emission under different microscale driving conditions cannot be ignored. Compared with the estimations obtained when second-by-second data were not considered, CO and NOx emissions were more than threefold higher when considering second-by-second speed; similarly, CO and NOx emission estimations were higher by approximately 10% and 3%, respectively, when considering second-by-second road grade. CONCLUSIONS : The proposed method can estimate vehicle emissions under real-world driving conditions in such applications as road design and traffic policy assessments.
PURPOSES : This study aimed to offer a greenhouse gases table to assist a road designer in calculating the greenhouse gases for a road environment when making a decision about an alternative road. METHODS: This study developed an operation mode table of greenhouse gases using the MOVES program. Similar factors for Korean vehicles and fuels are reflected in the MOVES program, which was made in the USA. Finally, a paired t-test was conducted to calculate the site data and MOVES data. Through these studies, a methodology was suggested for calculating carbon emissions based on various types of roads alignments. RESULTS : The site results for a passenger truck on the road were statistically significant when the vehicle speed was above 65 km/h. However, a future study will consider factors for various road alignments and vehicles. CONCLUSIONS : This study will contribute to the theoretical basis for reducing carbon emissions from roads by helping road designers make decisions about road alternatives in terms of the road environment.
PURPOSES : The authors set out to estimate the related carbon emissions, energy use, and costs of the national freeways and highways in Korea. To achieve this goal, a macro-level methodology for estimating those amounts by road type, road structure type, and road life cycle was developed.
METHODS : The carbon emissions, energy use, and costs associated with roads vary according to the road type, road structure type, and road life cycle. Therefore, in this study, the road type, road structure type, and road life cycle were classified into two or three categories based on criteria determined by the authors. The unit amounts of carbon emissions and energy use per unit road length by classification were estimated using data gathered from actual road samples. The unit amounts of cost per unit road length by classification were acquired from the standard cost values provided in the 2013 road business manual. The total carbon emissions, energy use, and cost of the national freeways and highways were calculated by multiplying the road length by the corresponding unit amounts.
RESULTS: The total carbon emissions, energy use, and costs associated with the national freeways and highways in Korea were estimated by applying the estimated unit amounts and the developed method.
CONCLUSIONS: The developed method can be employed in the road planning and design stage when decision makers need to consider the impact of road construction from an environmental and economic point of view.