검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2002.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purpose of this research was to determine the effects on the healing of fibular fractures in rabbits of low-intensity pulsed ultrasound (50 and 500 ) applied for periods of 4, 14 and 24 days following fibular osteotomy. Thirty-six male Japanese white rabbits were randomly divided into three groups of twelve for three treatment protocols: (1) ultrasound treatment at intensities of 50 and 500 until the 4th day following fibular osteotomy, (2) ultrasound treatment at intensities of 50 and 500 until the 14th day following fibular osteotomy, and (3) ultrasound treatment at intensities of 50 and 500 until the 24th day following fibular osteotomy. The low-intensity pulsed ultrasound was applied to only one fibula of each rabbit (these served as the experimental group). The other fibula of each rabbit served as the control group. The selection of which fibula was to be treated was made randomly. The animals were sacrificed on the 4th, 14th and 24th day after the start of ultrasound treatments. Percent of trabecular bone area and fibular radiography were carried out to compare the degree of fibular bone healing. A microscope was also used to determine any histologic changes. For statistical differences in radiological changes due to length of treatment period (4, 14 and 24 days respectively), the Wilcoxon signed-ranks test was used to compare the experimental and control groups. For statistical differences in fracture healing due to differences in ultrasound intensity, radiological studies were compared using the Mann-Whitney Test. And, to compute percentage differences in areas of trabecular bone, Two-way analysis of variance (ultrasound intensity x each group) was used. Experiment results were as follows: 1. In animals sacrificed on the 4th day, no difference was found in the radiological studies of the fibulae in the experimental and control groups (p>.05). However, experimental groups showed more rapid bone repair than control group. 2. Both radiographic and percent of trabecular bone area studies showed significant differences in rabbits sacrificed after 14 days. Fracture healing was significantly increased in the experimental group (p<.05) 3. In the animals sacrificed on the 24th day, histologic study showed rapid bone repair but fibular radiologic studies did not show statistical differences between the two groups (p>.05). 4. On the 14th day, bone union on radiograph was significantly more rapid in the treatment group with pulsed ultrasound of 50 than the group with 500 (p<.05). Histologic studies showed that both the 14 and 24 days groups had more rapid bone repair in animals treated with 50 ultrasound intensity than those treated with 500 intensity. In conclusion, it has been shown that the low-intensity pulsed ultrasound has a positive effect on bone fracture healing in the early stage and the range of pulse ultrasound from 50 to 500 is effective for fracture healing. Further study is needed to investigate the influence of pulsed ultrasound on delayed union and non-union in bone fractures and also for the clinical use of low-intensity pulsed ultrasound for bone healing in humans.
        4,900원
        2.
        1999.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        이 연구에서는 24마리의 Japanese White 토끼를 대상으로 양쪽 비골을 인위적으로 골절시킨 후 초음파치료가 골절의 치유에 효과가 있는지를 알아보았다. 초음파 치료 후 대조군의 비골과 실험군의 비골에서의 골소주 비율은 차이가 없었으며 초음파 주파수를 0.875 MHz로 하였을 때와 3 MHz로 하였을 때의 골소주 비율도 차이가 없었다. 따라서 초음파 치료는 토끼의 비골 골절의 치유 효과가 없었다. 그러나 다양한 주파수와 초음파 전달양식을 변화시켰
        4,000원
        3.
        1998.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Noninvasive low intensity ultrasound has been shown to be an effective means of accelerating bone fracture repair in both animal and clinical studies. The effects of ultrasound stimulation on bone repair after fibular osteotomy were assessed in a rabbit fibular fracture model. Bilateral closed fibular fractures were made in skeletally mature male White Japanese rabbits. In this study, 24 subjects were randomly divided into 2 groups: experimental group 1 (n=12), and experimental group 2 (n=12). Experimental group 1 received 0.875 MHz continuous ultrasound and Experimental group 2 was treated with 3 MHz continuous u1trasound. The ultrasound intensity was 50 and treatment time was 10 minutes for every session in both groups. In each rabbit, one fibula served as a control and the other was subjected to ultrasound treatment 5 times per week for 3 weeks. After 3 weeks, rabbits were sacrificed and the ratios of the area between the trabeculae and bone marrow of the fibulae were calculated. At the end of the experimental period, 14 of the 24 rabbits were excluded due to complications from surgery or inadequate fracture status for this study. There was no statistically significant difference in the trabeculae area between experimental leg and control leg in experimental group 1 and experimental group 2 (p>0.05). And there was also no statistic-statistically significant difference between experimental group 1 and experimental group 2 according to ultrasound treatment frequencies, 0.875 MHz and 3 MHz (p>0.05). These data suggest that in Japanese white rabbits, low intensity ultrasound stimulation does not facilitate fracture repair nor is there any difference in fracture repair results between ultrasound frequencies, 0.875 MHz and 3 MHz.
        4,000원