검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2017.11 구독 인증기관·개인회원 무료
        Subcritical water extraction (SWE) is an eco-friendly new extraction technology because it does not contain harmful organic solvent and has high extraction efficiency in a short time compared with conventional extraction methods. Blueberries (Vaccinium corymbosum) are widely known as superfood due to rich source of anthocyanin (malvidin-3-o-galgctoside) and antioxidant activity. In this study, optimal extraction condition of SWE from blueberries was determined and compared with the conventional extraction methods. SWE was carried out using a Dionex Accelerated Solvent Extractor (ASE, Model 350) under conditions of temperatures (110, 130, 150 and 170°C) and times (1, 3, 5 and 10 min). Total anthocyanin of SWE extracts was compared with hot water (60°C, 1 h) extract and pressed juice extract. The total anthocyanin content was determined by pH differential method. Considering both the extraction time and temperature conditions, the highest content of total anthocyanin content was 0.455 mg/g FW Vaccinium corymbosum at 130°C for 3 min. At high temperature and long extraction time, the anthocyanin in the blueberries will undergo thermal degradation due to low stability of anthocyanin at extreme condition. Besides, maximum yield of anthocyanin from blueberries using SWE was about 1.2 and 3.8 times more higher than hot water extract and pressed juice extract, respectively. Therefore, SWE is faster and more efficient method to extract anthocyanin from blueberries than conventional extraction methods. This study shows a possibility of SWE applied to food processing industry.
        2.
        2017.11 구독 인증기관·개인회원 무료
        Citrus fruit is important source of flavonoids, mainly flavanones which are narirutin and hesperidin. Those citrus flavonoids have been found to have health-related properties including antioxidant, anticancer, and anti-inflammatory. The main purpose of this study was to verify that the extraction of narirutin and hesperidin from Citrus peel can be more effective by combining pulsed electric field (PEF) pre-treatment and subcritical water extraction (SWE). Citrus unshiu peels were treated with PEF under conditions of electric field strength (3 kV/cm) and times (1 and 2 min). Subsequent SWE was conducted by using a Dionex Accelerated Solvent Extractor (ASE, Model 350) at extraction temperature 170°C for 10 min. The total flavonoids content was measured by using the aluminum chloride colorimetric method and the antioxidant capacity was analyzed by the Ferric reducing antioxidant power (FRAP) assay using spectrophotometer. The concentrations of narirutin and hesperidin were increased as PEF pre-treatment time increased. The highest concentrations of narirutin and hesperidin were 13.41 mg narirutin/g dry citrus peel and 141.16 mg hesperidin/g dry citrus peel at PEF pre-treatment condition of 3 kV/cm and 2 min. The total flavonoids contents of the extracts increased 105.2% and 123.1% for citrus peel PEF treated at 1 and 2 min, respectively. In addition, compared to the untreated sample, PEF pre-treatments of 1 and 2 min increased the antioxidant capacity of the extracts 109.2% and 160.8%, respectively. Therefore, the results demonstrate the potential of PEF pre-treatment to improve the SWE of flavonoids from citrus unshiu peel.