In order to study the effect of barley, Italian ryegrass (IRG), and legume mixture on nitrogen fixation and transfer to grasses on spring paddy field, an experiment was carried out from Oct. 2006 to June 2007 in Naju, Korea. A split plot design with three replications was used for the experiment. One reference plot was assigned for each treatment to determine nitrogen fixation. Main plots consisted of Chinese milk vetch, crimson clover, forage pea, and hairy vetch with barley, respectively. Subplot treatment were barley or IRG with four seeding ratio of legumes (50:50, 60:40, 70:30, and 80:20). To estimate N fixation by legumes, 15N isotope dilution technique was used. 15N fertilizer [(15NH4)2SO4 solution at 99.8 atom N] was uniformly applied to 600 cm2 in the middle of each plot on April 15, 2007. Plots were harvest by hand on June 8, 2007. Dried sample were ground to a fine power and analyzed for total N isotope N. 15N was determined using elemental analyzer-isotope ratio mass spectrometry. The calculation of N transfer was determined with the isotope dilution method. The content of N was higher in legumes than that in barley or Italian ryegrass. Nitrogen level in forage pea was significantly higher than that of other legumes. There were significantly differences in N content between legumes in IRG mixture. Atom % 15N excess was significantly different in legumes with barley. The 60:40 sub plot had higher (p<0.05) atom % 15N than other seeding ratio treatments. The enrichment ranged from 0 to 0.58. Compared to barley, the enrichment of IRG with its accompanied legumes was higher, ranging from 0.38 to 1.0. The N derived from the atmosphere (Ndfa) ranged from 0% to 49.5% with barley-legume mixture. It ranged from 0 to 60.5% in IRG-legume plots. N transfer from legumes to neighboring grasses was 12.3 to 90.9 kg/ha for barley-legume mixture and 31.7 to 107.8 kg/ha for IRG plots. IRG plots showed higher N transfer for IRG-legume mixture in general based on difference method. Based on 15N dilution method, the N transfer was 0 to 36.1 kg/ha for barley-legume mixture and 0 to 50.6 kg/ha for IRG plots. There was a tendency toward higher N transfer on the difference method than that of the 15N dilution method.
Since the expectations and demand for higher ride comfort of the customers (driver and passengers) have been dramatically increased, new vehicle model launched on the market have not only better performance and design-wise appealing, but also ride comfort has to be increasingly better than its predecessor. Automotive manufactures have focused on the increasing human thermal comfort. To achieve a high thermal comfort, most manufacturers provide a system for their cars to ensure ventilation, heating and cooling air in the passenger compartment. As results, the influence of the seats and situations in the thermal human comfort are considered. And, the temperature distribution pattern on the human face is acquired at natural condition, both warm condition on which seat is managed around 30℃ and hot condition on which seat is managed around 50℃.