검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2011.11 구독 인증기관·개인회원 무료
        Beauveria bassiana is one of universal insect pathogenic fungi that have been used for biocontrol agent against insect pests. This fungus has also been studied for medicinal use. To meet for commercial use, the artificial production of the fruit body of this fungus has been established by the Mushtech Co in Korea. This study was carried out to define the morphological features of the fruit body of B. bassiana developed through artificial cultivation. For the observation of mycelia growth, B. bassiana was cultured on the Sabouraud Dextrose agar plus Yeast Extract(SDAY), nut-supplemented medium, and Fe ion-supplemented SDAY at 25℃ for 15 days. The variation of colony color was observed between the different media. Strong pigmentation was observed on Fe ion-supplemented SDAY. To investigate morphological characteristics of fruit body, geminating ascospores and vegetative hyphae were observed though light microscopy and scanning microscope. During seven weeks of cultivation period, the development process of apical fertile part of stromata can be separated by the development stage of perithecia. To understand the developing process of fruit body at the transcript level, investigating process of distinct gene expression according to cultural condition and developmental stage was discussed.
        2.
        2010.10 구독 인증기관·개인회원 무료
        Several species of the genus Aphidius are used in biological control programs against aphid pests throughout the world and their behavior and physiology are well studied. But despite knowing the importance of sensory organs in their behavior, their antennal structure is largely unknown. In this study, the external morphology and distribution of the antennal sensilla on the antennal of both female and male adults of A. colemani were described using scanning electron microscopy (SEM). Generally, the filaform antennae of males (1,515.20±116.48 ㎛) are longer than females (1,275.06±116.42㎛). Antennae of this species is made up of scape, pedicel and flagellomeres. Male and female antennae differed in the total number of flagellomeres as 15 in males and 13 in females. Female and male antennae of A. colemani has samely seven types of sensilla. We classified sensilla placodea, Bohm bristles, 2 types of sensilla coeloconica, , 2 types of sensilla basiconica as with a tip pore and with wall pores, sensilla trichodea. In addition, the possible functions of the above sensilla types are discussed in light of previously published literature; mechanoreception(Bohm bristles, sensilla coeloconicaⅡ and sensilla trichodea) and chemoreception(sensilla coeloconicaⅠ, sensilla basiconicaⅠ,Ⅱ and sensilla placodea). Future studies on the functional morphology of the antennal sensilla of A. colemani using transmission electron microscopy (TEM) coupled with electrophysiological recordings will likely confirm the functions of the different sensilla identified in this study.