Ocean biogeochemistry plays a crucial role in sustaining the marine ecosystem and global carbon cycle. To investigate the oceanic biogeochemical responses to iron parameters in the tropical Pacific, we conducted sensitivity experiments using the Nucleus for European Modelling of the Ocean–Tracers of Ocean Phytoplankton with Allometric Zooplankton (NEMO-TOPAZ) model. Compared to observations, the NEMO-TOPAZ model overestimated the concentrations of chlorophyll and dissolved iron (DFe). The sensitivity tests showed that with increasing (+50%) iron scavenging rates, chlorophyll concentrations in the tropical Pacific were reduced by approximately 16%. The bias in DFe also decreased by approximately 7%; however, the sea surface temperature was not affected. As such, these results can facilitate the development of the model tuning strategy to improve ocean biogeochemical performance using the NEMOTOPAZ model.
Biogeochemical processes play an important role in ocean environments and can affect the entire Earth’s climate system. Using an ocean-biogeochemistry model (NEMO-TOPAZ), we investigated the effects of changes in albedo and wind stress caused by phytoplankton in the equatorial Pacific. The simulated ocean temperature showed a slight decrease when the solar reflectance of the regions where phytoplankton were present increased. Phytoplankton also decreased the El Niño-Southern Oscillation (ENSO) amplitude by decreasing the influence of trade winds due to their biological enhancement of upper-ocean turbulent viscosity. Consequently, the cold sea surface temperature bias in the equatorial Pacific and overestimation of the ENSO amplitude were slightly reduced in our model simulations. Further sensitivity tests suggested the necessity of improving the phytoplankton-related equation and optimal coefficients. Our results highlight the effects of altered albedo and wind stress due to phytoplankton on the climate system.
To evaluate effects of ligninolytic enzyme type on the mycelial response and ligninolytic enzyme production during interspecific interactions among wood-rotting fungi, 4 fungal strains, Trichophyton rubrum LKY-7, Trichophyton rubrum LSK-27, Pycnoporus cinnabarinus, and Trichoderma viride, were selected. Regarding ligninolytic enzyme production, LKY-7 secreted laccase and manganese peroxidase (MnP), P. cinnabarinus secreted only laccase, and LSK-27 secreted only MnP in glucosepeptone medium, while T. viride did not produce any ligninolytic enzymes. In the co-culture of LKY-7 with P. cinnabarinus, the formation of aerial mycelium was observed and the enhancement of laccase activity owing to interspecific interaction appeared to be very low. In the co-culture of LKY-7 and P. cinnabarinus with LSK-27, a hypha-free clear zone was observed, which resulted in deadlock, and increased laccase or MnP activity was detected at the interaction zone. The interaction responses of LKY-7, P. cinnabarinus, and LSK-27 with T. viride were characterized by the formation of mycelial barrages along the interface. As mycelial barrages were observed at the T. viride territory and no brownish pigment was observed in the mycelial barrages, it is suggested that laccase and MnP are released as part of an offensive response, not as a defensive response. The co-culture of P. cinnabarinus with T. viride lead to the highest enhancement in laccase activity, yielding more than 14-fold increase in laccase activity with respect to the mono-culture of P. cinnabarinus. MnP activities secreted by LKY-7 or LSK-27 was generally low in interspecific interactions.