The oral care probiotic strain Weissella cibaria CMU (oraCMU) inhibits volatile sulphur compounds associated with halitosis, presumably by inhibiting the growth of associated oral pathogens. In the present study, we investigated whether oraCMU inhibits the production of these compounds by suppressing the expression of mgl . This gene encodes L-methionine-α-deamino-γ-mercaptomethane-lyase (METase) and is involved in the production of methyl mercaptan (CH3SH) by Porphyromonas gingivalis . Therefore, we specifically investigated the effects of oraCMU on the growth, CH3SH production, METase activity, and mgl expression of P. gingivalis . The minimum inhibitory concentrations of cell-free supernatant and secreted proteins from oraCMU were 125 mg/mL and 800 µg/mL, respectively. At sub-minimum inhibitory concentration levels, these metabolites inhibited CH3SH production, but they also reduced P. gingivalis viability. Only heat-killed oraCMU decreased CH3SH production without affecting P. gingivalis viability. Heat-killed oraCMU also inhibited METase activity toward L-methionine and mgl mRNA expression (p < 0.05). In summary, we demonstrated the inhibition of volatile sulphur compounds via the antimicrobial action of oraCMU and, for the first time, the inhibition of such compounds by heat-killed oraCMU, which occurred at the molecular level.
Background: Propionibacterium acnes (P. acnes) is a major contributing factor for the inflammatory reaction of acne. Bee venom (BV) has been traditionally used to the treatment for inflammatory diseases. This study examined the anti-inflammatory effect of BV on P. acnes-induced inflammatory animal model. Methods: P. acnes were intradermally injected into both left and right ear of ICR mice. After injection, different concentrations of BV (1, 10 and 100 μg) mixed with 0.05 g of Vaseline was applied to the surface of the right ears of mice. Results: Histological observation revealed that P. acnes induced a considerable increase in the number of infiltrated inflammatory cells. However, BV treatment showed markedly reduced these reactions. Also, expression levels of TNF-α, and IL-1β were significant reduced in BV treated mice compared with P. acnes injected mice. The binding activity of NF-κB and AP-1 were increased in the P. acnes and Vaseline groups. In contrast, this enhancement of binding activity was markedly withdrawn after treatment with BV. Conclusion: In conclusion, this study indicates that BV has potential as an anti-acne agent and may be useful in the pharmaceutical and cosmetic industries.
Propionibacterium acnes (P. acnes) cause an inflammatory acne that plays an important role in the pathogenesis of acne by inducing inflammatory mediators. Bee venom therapy has been used in oriental medicine for the relief of pain and the treatment of inflammatory diseases. However, a direct effect of bee venom in skin inflammation has not been established. The purpose of this study was to investigate anti-inflammatory properties of bee venom in skin inflammation stimulated by heat-killed P. acnes using human keratinocytes and monocytes cell line. P. acnes stimulates the production of proinflammatory cytokines such as interleukins-1β, -8, interferon-γ and tumor necrosis factor-α in HaCaT and THP-1 cells. Bee venom effectively inhibits the secretion of IL-1β, IL-8, IFN-γ, and TNF-α. P. acnes treatment activates the expression of TLR2, which results in IL-8 expression. However, bee venom treatment reduces the expression of TLR2 and IL-8. Based on these results, bee venom has effects on anti-inflammatory activity against P. acnes in HaCaT and THP-1 cells.
We investigated the pulpal response to direct pulp capping in rat molar teeth using mineral trioxide aggregate (MTA) and calcium hydroxide (CH). A palatal cavity was prepared in rat maxillary molar teeth. Either MTA or CH was placed on the exposed pulp and all cavities were restored with composite. Rats were sacrificed for histological evaluation after 12 hours and at 2, 7, 14 and 21 days. In both the MTA and CH groups, reparative dentin formation was clearly observed on histology after 14 days. The MTA-capped pulps were found to be mostly free from inflammation, and hard tissue of a tubular consistent barrier was observed. In contrast, in CH-capped teeth, excessive formation of re¬parative dentin toward residual pulp was evident. The pulpal cell response beneath the reparative dentin layer was examined by immunofluorescence using antibodies against DSP. After 2 days, a few DSP immunopositive cells, most of which showed a cuboidal shape, appeared beneath the predentin layer. At 7 days, DSP-immunopositive cells with columnar odontoblast-like cells were seen beneath the newly formed hard tissues. At 14 and 21 days, DSP was more abundant in the vicinity of the odontoblastic process along the dentinal tubules than in the mineralized reparative dentin. The CH group showed strong expression patterns in terms of DSP immunoreactivity. Our results thus indicate that MTA may be a more effective pulp capping material as it induces the differentiation of odontoblast-like cells and the formation of reparative dentin without the loss of residual pulp functions.
An efficient method for the rapid propagation of Smilax china from axillary buds was established. Plants with thick leafage were selected from Korea native S. china population. Axillary buds of S. china collected from selected plant and were cultured in various culture media (2MS, MS, 1/2MS, WPM, B5 and SH medium). Shoot was induced from axillary bud on MS basal medium after 4 weeks of culture. 1/2MS medium showed a higher growth rate than those of the others, while the lowest shoot growth was obtained in 2MS medium. Among the sucrose concentrations, 5% sucrose was the optimum level for shoots growth from axillay buds. Among cytokinins, 0.5 mg L -1 6-benzylaminopurine (BAP) treatment showed the best performance on shoot multiplication, yielding average shoot multiplication forming about 2.4. Rooting was induced directly near the base of the shoot on 1/2MS medium containing with three-auxins α-napthalene acetic acid (NAA), indole acetic acid (IAA) and β-indolebutyric acid (IBA) (0.5 and 1.0 mg L -1 ). The 1.0 mg L -1 IBA treatments induced earliest rooting with maximum of root number and root growth. These rooted plantlets were successfully transferred to pots for 4 weeks hardening process, and were transferred to soil with above 90% survival rate.
In this paper, impregnated activated carbon fiber (IACF) was manufactured to pitch-based activated carbon fibers (ACF) with potassium hydroxide (KOH) by using wet impregnation method to raise nitrogen oxides (NOx) adsorptivity. The properties of IACF were observed using EPMA, TGA and DSC and NOx adsorptivity was observed at high and low temperature. Before and after adsorption was analyzed using ToF-SIMS for examine surface characterization of adsorbed NOx. The results showed that the better adsorptivity appeared for increasing KOH ratio. So, NOx adsorptivity showed result that is proportional between KOH and the adsorbed amount. On the other hand, adsorbent that manufactured without washing was better NOx adsorptivity than adsorbent that manufactured with washing. The behavior of adsorption show that crossing time of NO and NO2 delayed for a rising adsorptivity. And NO ratio increased but NO2 ratio decreased according as KOH ratio increases. NOx was confirmed through surface analysis that remain in NO2- and NO3- form on IACF surface.
There are Two new models developed for objective evaluation of fabric color patterns by applying a multiple regression analysis and an adaptive foray-rule-based system. The physical features of fabric color patterns are extracted through digital image processing and the emotional features are collected based on the psychological experiments of Soen[3, 4]. The principle physical features are hue, saturation, intensity and the texture of color patterns. The emotional features arc represented thirteen pairs of adverse adjectives. The multiple regression analyses and the adaptive fuzzy system are used as a tool to analyze the relations between physical and emotional features. As a result, both of the proposed models show competent performance for the approximation and the similar linguistic interpretation to the Soen's psychological experiments.
IPP isomerase (Iso) and Limonene synthase (Limo) are important enzymes in terpenoids biosynthesis pathway. The wild type and each metabolically engineered (Iso and Limo) transgenic spearmint (Mentha spicata Linne) plants were compared for their growth patterns and the contents of essential oil in in vitro culture media. The profile of terpenoid metabolites was obtained from the essential oil of the metabolically engineered transgenic spearmint, which was extracted using a modified SDE method, by GC-MS analysis. The growth of wild spearmint was more profuse in B5 culture medium than in other media. Significant differences in leaf and root growth patterns were observed between metabolically engineered transgenic and wild type spearmint plants. The leaves of the transgenic spearmint plants were slightly elongated but were dramatically narrower than those of wild type spearmints. The content of essential oil of transgenic spearmint was different slightly depending on the target terpenoid genes. The content of essential oils in Limo transgenic plants was higher than that of Iso, except for transgenic plant in B5 medium. The transgenic spearmint produced more terpenoids than the wild type. Iso spearmint extracts showed eleven terpenoids and a phenylpropane, while Limo spearmint extracts contained nine terpenoids. However, extracts from the wild type showed the presence of only four terpenoids.
Effects of nitrogen (N), phosphorous (P) and potassium (K) on the shoot and bulb growth of wild garlic (Allium victorialis var. platyphyllum) were studied by adopting in vitro culture. These macronutrients influenced the growth of both the shoot and bulb of garlic depending upon their application doses. A minimum of 3% potassium nitrate (KNO3) as a source of nitrogen was found to be critical for shoot elongation while higher concentrations were inhibitory. Garlic bulb growth was profuse on the usual KNO3 strength and sucrose (7%), followed by KNO3 (9.4 mM) supplement. On providing 41.22 mM ammonium nitrate (NH4NO3) as nitrogen source highest shoot growth was observed while 82.45 mM NH4NO3 as a source of nitrogen supported high bulb growth. With regard to potassium a good shoot growth was observed in medium that contained 0.31 mM KH2PO4 and 3% sucrose, while bulb growth was high on 2.5 mM KH2PO4 and 7% sucrose. These experiments may thus direct the development of excellent growth conditions for the commercial production of edible wild garlic.
This study carried out development of a natural antimicrobial agent from Schima wallichii ssp. liukiuensis. Compound I exhibiting potent antimicrobial activity against Candida spp. was isolated from the methanol extracts of Schima wallichii ssp. liukiuensis. The structure of I identified as a sterol glycoside consisted of a trisaccharide and α1-sitosterol. Trisaccharide composed of L-rhamnose, D-galactose and D-glucose residues. The antimicrobial activity of I was selective on yeast rather than bacteria or other fungi. Compound I was demonstrated to be ineffective against toxicity to mouse liver cells where as protective to human dermal fibroblast cells at low concentrations. Thus, it is reasonable to expect a sterol glycoside (I) as a valuable alternative for synthetic antifungal.