검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 6

        1.
        2017.03 KCI 등재 서비스 종료(열람 제한)
        Germination characteristics, seedling emergence, and early seedling growth of iron-coated rice seeds, cultivars Daebo and Samdeokbyeo, under different water depths were compared with those of non-coated seeds (control) and the results evaluated to obtain basic information for establishing stable seedlings in direct water seeding. The total germination percentage of the two seed treatments was similar, but iron-coated seeds had slightly faster germination and shorter mean germination time than non-coated seeds. Water absorption rates of iron-coated seeds were lower than that of non-coated seeds during seed germination. The germination percentage of the two iron-coated rice seed cultivars showed a significant decline of 15-22% after one year of storage under natural conditions. The seedling emergence percentage and uniformity of the two rice cultivars were significantly higher in the iron-coated seeds at 1-13 cm water depths but the percentage of floating seedlings was lower in iron-coated seeds than in non-coated seeds. The iron-coated seeds had a high seedling emergence percentage of 91.3-93.3% at all flooding depths whereas the non-coated seeds had a significantly low seedling emergence percentage of 57.7-71.7% at a water depth of 13 cm. Moreover, the shoot dry weight and seedling health score of iron-coated seeds were significantly higher than those of non-coated seeds, while root dry weights were similar in iron-coated and non-coated seeds, regardless of water depth. These results suggest that iron-coated seeds are more appropriate for stable seedling establishment in direct water seeding than are non-coated seeds.
        2.
        2015.10 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        상황버섯을 90℃에서 환류추출 시 시간과 추출용매의 조건(물 및 에탄올 농도, pH)에 따른 추출물을 제조하여 β-glucan 함량과 항산화활성 및 항산화성분의 함량을 조사 하였다. 상황버섯 추출물은 추출시간이 길어짐에 따라 수 율과 β-glucan 함량이 증가하여 24시간 추출 조건을 실험에 사용하였다. 추출용매에 따른 상황버섯 추출물의 수율은 60% 에탄올, pH 4의 조건에서 가장 높았다. β-glucan 함량 은 열수 추출물에서 높은 함량을 나타내었고, 산성과 중성 조건에서 높게 나타났다. 항산화활성은 60% 에탄올, pH 7 조건에서 추출한 것이 가장 높았다. 항산화성분의 함량 또한 항산화활성과 같은 경향을 보였으며, 수율, β-glucan 함량, 항산화활성 및 성분을 모두 고려하였을 때 60% 에탄 올, pH 7 추출 조건이 적합하였다.
        3.
        2015.07 서비스 종료(열람 제한)
        Tissue-specific promoters are a very useful tool for manipulating gene expression in a target tissue or organ; however, their range of applications in other plant species has not been determined, to date. In this study, we identified two late pollen-specific rice promoters (ProOsLPS10 and ProOsLPS11) via meta-anatomical expression analysis. We then investigated the expression of both promoters in transgenic rice (a homologous system) and Arabidopsis (a heterologous system) using ProOsLPS10 or ProOsLPS11::GFP-GUS constructs. As predicted by microarray data, both promoters triggered strong GUS expression during the late stages of pollen development in rice, with no GUS signals detected in the examined microspores and sporophytic tissues. Interestingly, these promoters exhibited different GUS expression patterns in Arabidopsis. While in Arabidopsis, the OsLPS10 promoter conferred GUS expression at the uni- and bi-cellular macrospore stages, as well as at the shoot apical region during the seedling stage, the OsLPS11 promoter was not active in the pollen at any stage, or in the examined sporophytic tissues. Furthermore, by performing a complementation analysis using a sidecar pollen (scp) mutant that displays developmental defects at the microspore stage, we found evidence that OsLPS10, which can be an applied promoter expressed in Arabidopsis, is useful for directing gene expression in the early stages of pollen development. Our results indicate that the OsLPS10 and OsLPS11 promoters can drive the expression of target genes during the late stages of pollen development in rice, but not in Arabidopsis. Our results also emphasize the necessity of confirming the applicability of an established promoter to heterologous systems.
        4.
        2013.07 서비스 종료(열람 제한)
        A male gametophyte, or pollen develops in the anther, and its development plays an important male reproductive process in flowering plants. A properly designed transgene construct can help to tailor transgene expression in plants by altering the expression strength, timing, and location. In this process, the promoter plays a pivotal role in controlling transgene expression. In this research, the promoter regions of rice anther/pollen-specific genes, named as OsMSP1 to OsMSP11,were selected from the microarray data sets covering 4 developmental stage of male gametophyte and then used for the construction of vector by Gateway cloning method and transformed into rice and Arabidopsis. All 11 promoters in rice and 9 in Arabidopsis were displayed as anther/pollen-specific/preferential genes by GUS assay and RT-PCR analysis. Three out of 11 promoters showed consistent results with published data. In this study, we demonstrated on eight new anther/pollen-specific or -preferential promoters (OsMSP1, OsMSP2, OsMSP3, OsMSP4, OsMSP5, OsMSP6, OsMSP8, and OsMSP9, which have not been reported before. Although the expression pattern of different genes active in pollen grains is diverse and complex, these experimental results would be helpful to understand the molecular mechanism of regulatory elements in rice microspore/pollen-specific genes.
        5.
        2012.07 서비스 종료(열람 제한)
        Pollen development in flowering plants is regulated by a comprehensive pattern of genes. One way to produce hybrid rice based on nuclear male sterility is to find out firstly the potential promoters that function specifically in anthers since it is a specific site for transcription initiation and play key roles for the spatial and temporal expression of the genes. To implement this objective, we were selected promoter region of 16 genes based on the expression pattern of microarray and then those were introduced into the promoterless final destination vector which containing the GFP and GUS reporters genes. The resulting twelve vectors were transformed into monocotyledonous rice (Oryza sativa L) and a dicotyledonous Arabidopsis as heterologous system. Minimum 20 plants for each vector were analyzed by histochemical GUS assay at the flowering stage in Arabidopsis. 9 vectors out of 12 vectors constructed were expressed exclusively at the anther, especially in pollen, however one vector exhibited expression in stigma. For rice, T-DNA insertion were confirmed with specific primers in each promoter and GFP region. All T0 transgenic plants contained T-DNA insertion in their genome. This study would provide valuable information for biotechnological application for the induction of male sterility in plants.
        6.
        2012.07 서비스 종료(열람 제한)
        Pollen development in flowering plants is regulated by a comprehensive pattern of genes. One way to produce hybrid rice based on nuclear male sterility is to find out firstly the potential promoters that function specifically in anthers since it is a specific site for transcription initiation and play key roles for the spatial and temporal expression of the genes. To implement this objective, we were selected promoter region of 16 genes based on the expression pattern of microarray and then those were introduced into the promoterless final destination vector which containing the GFP and GUS reporters genes. The resulting twelve vectors were transformed into monocotyledonous rice (Oryza sativa L) and a dicotyledonous Arabidopsis as heterologous system. Minimum 20 plants for each vector were analyzed by histochemical GUS assay at the flowering stage in Arabidopsis. 9 vectors out of 12 vectors constructed were expressed exclusively at the anther, especially in pollen, however one vector exhibited expression in stigma. For rice, T-DNA insertion were confirmed with specific primers in each promoter and GFP region. All T0 transgenic plants contained T-DNA insertion in their genome. This study would provide valuable information for biotechnological application for the induction of male sterility in plants.