The Sun-Earth Lagrange point L4, which is called a parking space of space, is considered one of the unique places where solar activity and the heliospheric environment can be observed continuously and comprehensively. The L4 mission affords a clear and wide-angle view of the Sun-Earth line for the study of Sun-Earth connections from remote-sensing observations. The L4 mission will significantly contribute to advancing heliophysics science, improving space weather forecasting capability, extending space weather studies far beyond near-Earth space, and reducing risk from solar radiation hazards on human missions to the Moon and Mars. Our paper outlines the importance of L4 observations by using remote-sensing instruments and advocates comprehensive and coordinated observations of the heliosphere at multi-points including other planned L1 and L5 missions. We mainly discuss scientific perspectives on three topics in view of remote sensing observations: (1) solar magnetic field structure and evolution, (2) source regions of geoeffective solar energetic particles (SEPs), and (3) stereoscopic views of solar corona and coronal mass ejections (CMEs).
VR 및 AR은 대중들이 접근하기 어려운 기술이 아닌, 개인용 스마트 폰 하나로 체험 및 활용 할 수 있는 시 대가 되었다. 최근 이런 개인용 스마트 폰의 다양한 센서를 활용한 AR 콘텐츠가 개발되고 서비스 되고 있다. AR 콘텐츠의 수요가 커지면서Software교육의 수요도 커지게 되었다. 하지만, 비전공자들도 배우기 쉬운 Python 언어를 중심으로 SW 교육이 활발해졌음에도, 아직까지 AR 콘텐츠 개발에서는 Python을 적극적으로 사용할 수 없다. AR 콘텐츠는 기술 분야 뿐 아니라 인터렉티브 아트 분야에서도 활발하게 사용되고 있다. 최근 인터 렉티브 아티스트들은 Python을 이용하여 인공지능을 활용한 작품을 개발 및 전시하고 있다. Python을 통한 SW 교육은 SW 분야의 취업에만 필요한 것이 아니라 아트 분야에서도 필요한 교육이 되었다. 본 논문에서는 AR 콘텐츠 개발 교육을 위한 Python과 Unity 3D Engine을 이용한 네트워크 기반 AR 프레임 워크를 제안한다. 제 안한 AR 프레임 워크는 Web 기반 브라우저에서 개인용 스마트 폰의 카메라에 접근하여 카메라 정보를 Main Server에 전송하고 Python에서 Mark를 분석한다. Mark 정보에 맞춰 Unity 3D Engine에서 3D 오브젝트를 렌더 링하고, 카메라 정보화 합성 후, MJPEG 스트리밍으로 개인용 스마트 폰 화면에 렌더링 된다. 본 논문에서 제 안한 AR 프레임 워크는 SW 교육 플랫폼과 비대면 교육 플랫폼의 요구사항을 반영하며, 인터렉티브 아티스트 들의 다양한 도전에 필요한 기술적 제한을 낮춰 줄 것으로 기대한다.
In this study, we perform a statistical investigation of the kinematic classification of 4,264 coronal mass ejections (CMEs) from 1996 to 2015 observed by SOHO/LASCO C3. Using the constant acceleration model, we classify these CMEs into three groups: deceleration, constant velocity, and acceleration motion. For this, we devise three different classification methods using fractional speed variation, height contribution, and visual inspection. The main results of this study can be summarized as follows. First, the fractions of three groups depend on the method used. Second, about half of the events belong to the groups of acceleration and deceleration. Third, the fractions of three motion groups as a function of CME speed are consistent with one another. Fourth, the fraction of acceleration motion decreases as CME speed increases, while the fractions of other motions increase with speed. In addition, the acceleration motions are dominant in low speed CMEs whereas the constant velocity motions are dominant in high speed CMEs.