검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 10

        1.
        2020.12 구독 인증기관 무료, 개인회원 유료
        Green tea polyphenol (–)-epigallocatechin-3-gallate (EGCG) is a potent antioxidant with protective effects against neurotoxicity. However, it is currently unclear whether EGCG protects neuronal cells against radiation-induced damage. Therefore, the objective of this study was to investigate the effects of EGCG on ultraviolet (UV)-induced oxidative stress and apoptosis in PC12 cells. The effects of UV irradiation included apoptotic cell death, which was associated with DNA fragmentation, reactive oxygen species (ROS) production, enhanced caspase-3 and caspase-9 activity, and poly (ADP-ribose) polymerase cleavage. UV irradiation also increased the Bax/Bcl-2 ratio and mitochondrial pathway-associated cytochrome c expression. However, pretreatment with EGCG before UV exposure markedly decreased UV-induced DNA fragmentation and ROS production. Furthermore, the UV irradiationinduced increase in Bax/Bcl-2 ratio, cytochrome c upregulation, and caspase-3 and caspase-9 activation were each ameliorated by EGCG pretreatment. Additionally, EGCG suppressed UV-induced phosphorylation of p38 and rescued UV-downregulated phosphorylation of ERK. Taken together, these results suggest that EGCG prevents UV irradiationinduced apoptosis in PC12 cells by scavenging ROS and inhibiting the mitochondrial pathways known to play a crucial role in apoptosis. In addition, EGCG inhibits UV-induced apoptosis via JNK inactivation and ERK activation in PC12 cells. Thus, EGCG represents a potential neuroprotective agent that could be applied to prevent neuronal cell death induced by UV irradiation.
        4,200원
        2.
        2020.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Dentin hypersensitivity (DH) is defined as short and sharp pain caused by external stimuli such as heat, vaporization, contact, osmotic pressure, and chemical stimulation in a normal tooth, rather than due to disease or tooth damage. Its solution is to block the flow of dentinal fluid by physically blocking the dentinal tubule. Of these treatments, fluoride and oxalate type for hypersensitivity can only have a temporary effect. Resins should be used with a suitable bonding system and they may cause hypersensitivity symptoms after treatment. Overcoming these limitations, there is a need for method that can effectively treat dental hypersensitivity lasting long without any side effects. For this reason, experiments with 200 plant extracts as candidates for dentin hypersensitivity, Buddleja officinalis was considered as a candidate for present study. The purpose of this study is to confirm whether the ethanol extract of Buddleja officinalis is effective to protect enamel and dentin by coating tooth surface and resistance to acid or alkali even after tooth coating.
        4,000원
        3.
        2019.12 구독 인증기관 무료, 개인회원 유료
        Porphyromonas gingivalis (Pg), Aggregatibacter actinomycetemcomitans (Aa), Tannerella forsythia (Tf), Prevotella intermedia (Pi), and Fusobacterium nucleatum (Fn) are major periodontal pathogens. Lipopolysaccharides (LPSs) from periodontal bacteria play an important role in periodontal pathogenesis by stimulating host cells to produce inflammatory cytokines. In this study, highly pure LPSs from the five major periodontopathogens were prepared, and their monocyte chemoattractant protein-1 (MCP-1) and tumor necrosis factor-α (TNF-α)-inducing activities were compared in human umbilical vein endothelial cells (HUVECs) and THP-1 macrophagic cells, respectively. In HUVECs, LPSs from Aa and Fn were potent stimulators for MCP-1 induction; however, LPSs from Pg, Pi, and Tf were much weaker MCP-1 inducers. In THP-1 cells, LPSs from Pg, Aa, and Fn were relatively strong inducers of TNF-α, whereas LPSs from Pi and Tf produced little activity. The Toll-like receptor (TLR)2/TLR4 dependency of various LPSs was also determined by measuring NF-κB reporter activity in TLR2- or TLR4-expressing 293 cells. LPSs from Aa, Fn, and Tf stimulated only TLR4; however, LPSs from Pg and Pi stimulated both TLR2 and TLR4. These results suggest that LPSs from major periodontal bacteria differ considerably in their cell-stimulating activity.
        4,000원
        4.
        2017.12 구독 인증기관 무료, 개인회원 유료
        Cyclooxygenase-2 (COX-2)-mediated prostaglandin E2 (PGE2) plays a key role in development and progression of inflammatory responses and Porphyromonas gingivalis is a common endodontic pathogen. In this study, we investigated induction of COX-2 and PGE2 by P. gingivalis in human dental pulp cells (HDPCs). P. gingivalis increased expression of COX-2, but not that of COX-1. Increased levels of PGE2 were released from P. gingivalis-infected HDPCs and this PGE2 increase was blocked by celecoxib, a selective COX-2 inhibitor. P. gingivalis activated all three types of mitogen-activated protein kinases (MAPKs). P. gingivalis-induced activation of nuclear factor-κB (NF-κB) was demonstrated by the results of phosphorylation of NF-κ B p65 and degradation of inhibitor of κB-α (IκB-α). Pharmacological inhibition of each of the three types of MAPKs and NF-κB substantially attenuated P. gingivalisinduced PGE2 production. These results suggest that P. gingivalis should promote endodontic inflammation by stimulating dental pulp cells to produce PGE2.
        4,000원
        5.
        2017.09 구독 인증기관 무료, 개인회원 유료
        We have previously shown that the specific phosphatidylinositol 3-kinase inhibitor LY294002 (LY29), and its inactive analog LY303511 (LY30), inhibit a monocyte chemoattractant protein-1 (MCP-1) expression in human umbilical vein endothelial cells; these results suggest the potential of LY30 as an anti-inflammatory drug. In this study, we determined the effects of LY30 on the production of various inflammatory cytokines in human macrophagic THP-1 cells which were stimulated with lipopolysaccharide (LPS). LY30 selectively suppressed the mRNA expression of IL-12 p40, TNF-α, and MCP-1 without affecting the expression of IL-1α, IL-6, and IL-8. Inhibition of the production of IL-12 and TNF-α by LY30 was also demonstrated using ELISA assays. In order to elucidate the mechanisms of the action of LY30, we examined the role played by the mitogen-activated protein kinases and the key transcription factors, AP-1 and NF-κB in LPS-stimulated THP-1 cells. The results revealed that LY30 inhibited LPS-induced activation of ERK, but not p38 or JNK. Furthermore, the AP-1 DNA binding activity was suppressed by LY30 based upon the dosage, whereas NF-κB DNA binding was not affected. These results suggest that LY30 selectively inhibits cytokine production in the LPS-stimulated macrophagic THP-1 cells by downregulating the activation of ERK and AP-1.
        4,000원
        6.
        2014.09 구독 인증기관 무료, 개인회원 유료
        Porphyromonas gingivalis is one of the most important periodontal pathogens and has been to known to invade various types of cells, including endothelial cells. The present study investigated the mechanisms involved in the internalization of P. gingivalis in human umbilical vein endothelial cells (HUVEC). P. gingivalis internalization was reduced by clathrin and lipid raft inhibitors, as well as a siRNA knockdown of caveolin-1, a principal molecule of lipid raft-related caveolae. The internalization was also reduced by perturbation of actin rearrangement, while microtubule polymerization was not required. Furthermore, we found that Src kinases are critical for the internalization of P. gingivalis into HUVEC, while neither Rho family GTPases nor phosphatidylinositol 3-kinase are required. Taken together, this study indicated that P. gingivalis internalization into endothelial cells involves clathrin and lipid rafts and requires actin rearrangement associated with Src kinase activation
        4,000원
        7.
        2012.09 구독 인증기관 무료, 개인회원 유료
        Aggregatibacter actinomycetemcomitans is the most important etiologic agent of aggressive periodontitis and can interact with endothelial cells. Monocyte chemoattractant protein-1 (MCP-1) and interleukin-8 (IL-8) are chemokines, playing important roles in periodontal pathogenesis. In our current study, the effects of A. actinomycetemcomitans on the production of MCP-1 and IL-8 by human umbilical vein endothelial cells (HUVEC) were investigated. A. actinomycetemcomitans strongly induced the gene expression and protein release of both MCP-1 and IL-8 in a dose- and time-dependent manner. Dead A. actinomycetemcomitans cells were as effective as live bacteria in this induction. Treatment of HUVEC with cytochalasin D, an inhibitor of endocytosis, did not affect the mRNA up-regulation of MCP-1 and IL-8 by A. actinomycetemcomitans. However, genistein, an inhibitor of protein tyrosine kinases, substantially inhibited the MCP-1 and IL-8 production by A. actinomycetemcomitans, whereas pharmacological inhibition of each of three members of mitogen-activated protein (MAP) kinase family had little effect. Furthermore, gel shift assays showed that A. actinomycetemcomitans induces a biphasic activation (early at 1-2 h and late at 8-16 h) of nuclear factor-κB (NF-κB) and an early brief activation (0.5-2 h) of activator protein-1 (AP-1). Activation of canonical NF-κB pathway (IκB kinase activation and IκB-α degradation) was also demonstrated in these experiments. Although lipopolysaccharide from A. actinomycetemcomitans also induced NF-κB activation, this activation profile over time differed from that of live A. actinomycetemcomitans. These results suggest that the expression of MCP-1 and IL-8 is potently increased by A. actinomycetemcomitans in endothelial cells, and that the viability of A. actinomycetemcomitans and bacterial internalization are not required for this effect, whereas the activation of protein tyrosine kinase(s), NF-κB, and AP-1 appears to play important roles. The secretion of high levels of MCP-1 and IL-8 resulting from interactions of A. actinomycetemcomitans with endothelial cells may thus contribute to the pathogenesis of aggressive periodontitis.
        4,000원
        8.
        2010.06 구독 인증기관 무료, 개인회원 유료
        Enterococcus faecalis, a gram-positive bacterium, has been implicated in endodontic infections, particularly in chronic apical periodontitis. Proinflammatory cytokines, including tumor necrosis factor-α (TNF-α), are involved in the pathogenesis of these apical lesions. E. faecalis has been reported to stimulate macrophages to produce TNF-α. The present study investigated the mechanisms involved in TNF-α production by a murine macrophage cell line, RAW 264.7 in response to exposure to E. faecalis. Both live and heat-killed E. faecalis induced high levels of gene expression and protein release of TNF-α. Treatment of RAW 264.7 cells with cytochalasin D, an inhibitor of endocytosis, prevented the mRNA up-regulation of TNF-α by E. faecalis. In addition, antioxidant treatment reduced TNF-α production to baseline levels. Inhibition of extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein (MAP) kinase also significantly attenuated E. faecalis-induced TNF-α expression by RAW 264.7 cells. Furthermore, activation of NF-κB and AP-1 in RAW 264.7 cells was also stimulated by E. faecalis. These results suggest that the phagocytic uptake of bacteria is necessary for the induction of TNF-α in E. faecalis-stimulated macrophages, and that the underlying intracellular signaling pathways involve reactive oxygen species, ERK, p38 MAP kinase, NF-κB, and AP-1.
        4,000원
        9.
        2009.06 구독 인증기관 무료, 개인회원 유료
        Porphyromonas gingivalis is a major etiologic agent of chronic periodontitis and cytokines produced by macrophages play important roles in the pathogenesis of periodontal diseases. In this study we investigated the cytokine response of phorbol myristate acetatedifferentiated THP-1 cells exposed to P. gingivalis. Compared with the prominent cell wall components of P. gingivalis (lipopolysaccharide and the major fimbrial protein FimA), live P. gingivalis stimulated much higher levels of cytokine production. In addition, whereas low multiplicity of infection challenges (MOI=10) of P. gingivalis 381 stimulated high levels of monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and IL-1β, high dose challenges with this bacterium (MOI = 100) resulted in a substantially diminished production of MCP-1 and IL-6. Moreover, high MOI P. gingivalis challenges achieved only low levels of induction of MCP-1 and IL-6 mRNA. The decreased production of MCP-1 and IL-6 appeared to be mediated by P. gingivalis proteases, because high MOI challenges with congenic protease mutant strains of this microorganism (MT10 and MT10W) did not result in a diminished production of MCP-1 and IL-6. Similar to its protease mutant strains, leupeptin (a protease inhibitor)- treated P. gingivalis at high doses induced high levels of MCP-1 production. To examine the mechanisms underlying the diminished production of MCP-1 by P. gingivalis proteases, the activation of mitogen-activated protein (MAP) kinases and NF-xB was compared between the 381 and MT10W strains. Whilst high doses of both 381 and MT10W similarly activated the three members of the MAP kinase family, the DNA binding activity of NF-xB, as revealed by gel shift assays, was greatly increased only by MT10W. Taken together, our data indicate that P. gingivalis stimulates the production of high levels of TNF-α, IL-1β, IL-6, and MCP-1 but that high dose challenges with this bacterium result in a diminished production of MCP-1 and IL-6 via the protease-mediated suppression of NF-B activation in THP-1 macrophagic cells.
        4,000원
        10.
        2006.03 구독 인증기관 무료, 개인회원 유료
        Periodontopathogens including Porphyromonas gingivalis interact with host periodontal cells and the excessive subsequent host responses contribute a major part to the development of periodontal diseases. Cyclooxygenase(COX)-2-synthesized has detrimental activities in terms of periodontal pathogenesis. The present study investigated induction of COX-2 expression by P. gingivalis in human monocytic THP-1 cells. Live P. gingivalis increased expression of COX-2, but not that of COX-1, which was demonstrated at both mRNA and protein levels. Elevated levels of were released from P. gingivalis-infected THP-1 cells. Pharma-cological inhibition of p38 mitogen-activated protein kinase(MAPK) and extracellular signal-regulated kinase(ERK) substantially attenuated P. gingivalis-induced COX-2 mRNA expression. Indeed, activation of p38 MAPK and ERK was observed in P. gingivalis-infected THP-1 cells. Also, P. gingivalis induced activation of nuclear factor-κB (NF-κB)which is an important transcription factor for COX-2. These results suggest that COX-2 expression is up regulated in P. gingivalis-infected monocytic cells, at least in part, via p38 MAPK, ERK, and NF-κB.
        4,000원