검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1,888

        47.
        2022.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The mechanosynthesis route is a physical top–down strategy to produce different nanomaterials. Here, we report the formation of graphene nanoribbons (GNRs) through this route using carbon bars recovered from discarded alkaline batteries as raw material. The mechanosynthesis time (milling time) is shown to have an influence on different features of the GNRs such as their width and edges features. TEM revealed the presence of GNRs with widths of 15.26, 8.8, and 23.55 nm for the milling times of 6, 12, and 18 h, respectively. Additionally, the carbon bars evolved from poorly shaped GNRs for the shortest milling time (6 h) to well-shaped GNRs of oriented sheets forming for the longest milling time. Besides GNRs, graphene sheets (GNS) of different sizes were also observed. The Raman analysis of the 2D bands identified the GNS signal and confirmed the GNRs nature. ID/IG values of 0.21, 0.32, and 0.40 revealed the degree of disorder for each sample. The in-plane sp2 crystallite sizes ( La) of graphite decreased to 91, 60, and 48 nm with increasing peeling time. The RBLM band at 288 cm− 1 confirmed the formation of the GNRs. Mechanosynthesis is a complex process and the formation of the GNRs is discussed in terms of a mechanical exfoliation, formation of graphene sheets and its fragmentation to reach GNR-like shapes. It is shown that the synthesis of GNRs through the mechanosynthesis route, besides the use of recycled materials, is an alternative for obtaining self-sustaining materials.
        5,400원
        48.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the powder bed fusion (PBF) process, a 3D shape is formed by the continuous stacking of very fine powder layers using computer-aided design (CAD) modeling data, following which laser irradiation can be used to fuse the layers forming the desired product. In this method, the main process parameters for manufacturing the desired 3D products are laser power, laser speed, powder form, powder size, laminated thickness, and laser diameter. Stainless steel (STS) 316L exhibits excellent strength at high temperatures, and is also corrosion resistant. Due to this, it is widely used in various additive manufacturing processes, and in the production of corrosion-resistant components with complicated shapes. In this study, rectangular specimens have been manufactured using STS 316L powder via the PBF process. Further, the effect of heat treatment at 800 °C on the microstructure and hardness has been investigated.
        4,000원
        50.
        2021.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Sensing of volatile organic compounds (VOCs) is a growing research topic because of the concern about their hazard for the environment and health. Furan is a VOC produced during food processing, and it has been classified as a risk molecule for human health and a possible biomarker of prostate cancer. The use of carbon nanotubes for VOCs sensing systems design could be a good alternative. In this work, a theoretical evaluation of the interactions between furan and zigzag single-wall carbon nanotubes takes into account different positions and orientations of the furan molecule, within a density-functional theory first-principles approach. The van der Waals interactions are considered using different exchange-correlation functionals (BH,C09, DRSLL and KBM). The results indicate that vdW-functionals do not significantly affect geometry; however, the binding energy and the distance between furan and nanotube are strongly dependent on the selected exchange-correlation functional. On the other hand, the effects of single and double vacancies on carbon nanotube are considered. It was found that the redistribution of charge around the single-vacancy affects the bandgap, magnetic moment, and binding energy of the complex, while furan interaction with a double-vacancy does not considerably change the electronic structure of the system. Our results suggest that to induce changes in the electronic properties of carbon nanotubes by furan, it is necessary to change the nanotube surface, for example, by means of structural defects.
        4,000원
        51.
        2021.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Multi-walled carbon nanotubes (MWCNTs) grown by chemical vapor deposition retain the residual catalyst particles from which the growth occurred, which are considered a detriment to MWCNTs’ performance, especially electrical conductivity. The first direct measurements have been made of the electrical transport through the catalyst cap into the MWCNT using nanoscale 2-point-probe to determine the effects of the catalyst particle’s size and the diameter ratio with its associated MWCNT on the electrical transport through the catalyst cap as compared to the inherent conductivity of the MWCNT. The MWCNT diameter is independent of the catalyst size, but the ratio of the catalyst cap diameter to MWCNT diameter (DC/DNT) determines the conduction mechanism. Where DC/DNT is greater than 1 the resulting I–V curve is near ohmic, and the conduction through the catalyst ( RC+NT) approaches that of the MWCNT (RNT); however, when the DC/DNT < 1 the I–V curves shift to rectifying and RC+NT > > RNT. The experimental results are discussed in relation to current crowding at the interface between catalyst and nanotube due to an increased electric field.
        4,000원
        52.
        2021.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Legacy waste from the decommissioned A-1 nuclear power plant in the Slovak Republic is scheduled for immobilisation within a tailored alkali borosilicate glass formulation, as part of ongoing site cleanup. The aqueous durability and characterisation of a simulant glass wasteform for Chrompik III legacy waste, was investigated, including dissolution experiments up to 112 days (90°C, ASTM Type 1 water). The wasteform was an amorphous, light green glassy product, with no observed phase separation or crystalline inclusions. Aqueous leach testing revealed a suitably durable product over the timescale investigated, comparing positively to other simulant nuclear waste glasses and vitreous products tested under similar conditions. Iron and titanium rich precipitates were observed to form at the surface of monolithic samples during leaching, with the formation of an alkali deficient alteration layer behind these at later ages. Overall this glass appears to perform well, and in line with expectations for this chemistry, although longer-term testing would be required to predict overall durability. This work will contribute to developing confidence in the disposability of vitrified Chrompik legacy wastes.
        4,600원
        53.
        2021.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        양액 pH가 에케베리아 생육과 색상에 미치는 영향을 알아 보기 위해 본 연구를 수행하였다. 에케베리아 ‘Perle von Nurnberg’ 품종을 선택하여 미국 유타주 프로보(Provo)시 소재 브리검영대학교 Plant and Wildlife 학과의 연구온실에서 수행되었다. 이 품종에 pH 4, pH 7 및 pH 10 3종류의 양액을 공급하여 연구를 수행하였다. 양액 pH 4 처리구에서는 초폭이 120.6mm로 pH 10 처리구의 105.3mm 보다 크게 자랐으며 유의성도 있었다. 하지만 엽장, 엽폭, 엽수에 있어서는 처리간 유의성은 없었다. pH meter를 통해서 식물체 즙액의 pH 를 측정하였는데 4.5에서 4.7 범위의 값을 보였으며 처리간 유의성은 없었다. 위의 결과로 양액의 pH는 식물체의 pH에 영향을 미치지 않는 것으로 판단되었다. 색차계를 이용하여 CIELAB 값을 측정하였을 때 pH 4 처리구에서의 적색도(a)는 -4.0이었으며 pH 10 처리구보다 더 녹색을 띠었다. 명도(L)과 황색도(b) 값은 처리간에 유의적인 차이가 없었다. HPLC를 통한 안토시아니딘 분석에서는 주로 cyanidin, delphinidin 및 pelargonidin의 함량이 모든 처리구에서 상대적으로 높게 나타났다. 공급양액의 pH가 상승함 따라 그 함량도 높아지는 경향을 보였다. Petunidin, malvidin 함량은 미량으로 존재하였으며, peonidin은 분석되지 않았다. 이상의 결과로부터 양액을 pH 10으로 처리하였을 때 에케베리아의 생육억제와 잎 착색에 가장 효과적임을 알 수 있었다.
        4,000원
        54.
        2021.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Preparation of activated carbon from biomass residue with conventional steam activation was conducted to find the alternative raw materials for meeting the high demand for low-cost porous material in the desiccant application. In this study, activated carbons were produced from dead camphor leaves using two-step methods at different preparation temperatures. The characterization results revealed that the prepared activated carbons have a surface area of 700 m2/g, with 75% of microporosity. The water vapor sorption study reported that the water uptake of camphor leaf-based activated carbons was strongly affected by the pore properties of the materials. Moreover, from the water adsorption kinetics, it was observed that the rate constant of adsorption was varied at each relative pressure, which can be assumed that the water adsorption mechanism is different at each relative pressure. From these results, it was revealed that the prepared camphor leaf-based activated carbons have a promising ability to adsorb water vapor from humid air.
        4,300원
        55.
        2021.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The use of recycled materials, such as the fine recycled aggregate made from concrete waste and carbon fiber (CF) product of industrial waste, for the manufacture of conductive recycled mortars (CRM), transforms the mortar base cement normally made with cement:sand in a sustainable multifunctional material, conferring satisfactory mechanical and electrical properties for non-structural uses. This action provides ecological benefits, reducing the use of natural fine aggregates from rivers and the amount of concrete waste deposited in landfills resulting from construction waste. In this investigation the effect of the addition of CF on electrical properties in hardened, wet and dry state, electric percolation in dry state and fluidity of the wet mixture of a cement based CRM was evaluated: fine recycled aggregate: graphite powder, CRM specimens with dimensions of 4 × 4 × 16 cm. were manufactured for 3, 7 and 28 days of age and sand/cement ratios = 1.00, graphite/cement = 1.00, water/cement = 0.60 and CF = 0.1, 0.3, 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0% compared to the weight of cement. The results demonstrated the effect of the addition of CF in CRM, reducing fluidity of the mixtures due to the opposition generated by its physical interaction of CF with recycled sand or recycled fine aggregate and graphite powder (GP), in its case, placing the electric percolation percolation at 0.30% and 0.45% of CF for CRM with and without GP, respectively. Increases in electrical conductivity (EC) without the presence of GP are defined by the contact between the CF and the conductive paths formed. In contrast, with the presence of GP, the EC is defined by the contact between the CF and the GP simultaneously, forming conductive routes with greater performance in its EC.
        4,600원
        56.
        2021.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Even in an era where 8-meter class telescopes are common, small telescopes are considered very valuable research facilities since they are available for rapid follow-up or long term monitoring observations. To maximize the usefulness of small telescopes in Korea, we established the SomangNet, a network of 0.4{1.0 m class optical telescopes operated by Korean institutions, in 2020. Here, we give an overview of the project, describing the current participating telescopes, its scienti c scope and operation mode, and the prospects for future activities. SomangNet currently includes 10 telescopes that are located in Australia, USA, and Chile as well as in Korea. The operation of many of these telescopes currently relies on operators, and we plan to upgrade them for remote or robotic operation. The latest SomangNet science projects include monitoring and follow-up observational studies of galaxies, supernovae, active galactic nuclei, symbiotic stars, solar system objects, neutrino/gravitational-wave sources, and exoplanets.
        4,600원
        60.
        2021.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We report a simple procedure to fabricate single crystals 3D C60 having an FCC structure on silicon substrates using a vapour–solid set-up in vacuum conditions. The morphology of the deposited film can be tuned by controlling the temperature and position of the substrate. The as-fabricated samples are extensively characterised by transmission electron microscopy, scanning electron microscope, X-ray powder diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy and nanoindentation, which allow us to shed light on the recrystallization process of the C60. In addition, the growth mechanism of the formation of crystalline 3D structure of the C60 film is discussed in detail. Based on the newly gained knowledge of mechanism and its unique properties, fullerene has shown huge potential as a solid lubricant on various kinds of substrates.
        4,000원
        1 2 3 4 5