Background : In recent years, the demand for oriental cuisine has increased due to the increase of multicultural families and dietary changes, and Coriandrum sativum is also consumed steadily. Therefore, this study was conducted to establish the optimum planting density for high-quality seed production of Coriandrum sativum in order to increase the utilization of leafy vegetables and establish a foundation for production throughout the year through house cultivation
Methods and Results : This experiment was carried out from March to August 2017 at a house facility located in Namwon-si (500 m above sea level) in Jeollabuk-do. Seeds of Coriandrum sativum were sown on March 10, 2017 and planting density was set at 4 levels of 10 × 5 ㎝, 10 × 10 ㎝, 10 × 20 ㎝, and 10 × 30 ㎝. Seeds were harvested on August 2 and 142 days after sowing. Growth characteristics of C. sativum were investigated on May 16, 66 days after sowing. Plant height, leaf length and leaf width were good at 52.9 ㎝, 3.8 ㎝, and 4.1 ㎝ in planting density of 10 × 10 ㎝, respectively, but there was no statistically significant difference between treatments. As a result of examining the number of leaflets per plant, 20.9 leaves in 10 × 30 ㎝ treatment was the best and the difference was significant. The fresh weight of the overground part was the highest at 2,322 ㎏/10a in 10 × 10 ㎝ treatment. The total fresh weight of the overground and underground parts were 2,633 ㎏/10a and 2,572 ㎏/10a at 10 × 10 ㎝ and 10 × 20 ㎝, respectively. The total weight of seeds per treatment was the highest at 146 ㎏/10a at 10 × 10 ㎝ treatment, but the difference was not significant.
Conclusion : As a result of the experiment to determine the proper planting density, the growth characteristics and the total weight of seeds were good at 10 × 10 ㎝ treatment, but there was no statistically significant difference. Therefore, when C. sativum are cultivated for the purpose of seed production, the planting density of 10 × 30 ㎝ is considered to be the most appropriate for seed requirement and labor saving.
Background : This study was carried out to investigate the possibility of cosmetics materials by comparing growth characteristics, photosynthetic rate and major functional components of Rosa multiflora and Perilla frutescens at different altitudes.
Methods and Results : This experiment is being carried out in April 2018 in Namwon (500 m above sea level) and Iksan (15 m above sea level) in Jeollabuk-do. The growth characteristics of R. multiflora were investigated at the end of May. Flowers were collected at this time and used as samples for functional analysis. The growth characteristics of P. frutescens were investigated in the middle of August and the ground part was collected at this time and used as a sample for functional analysis. Photosynthetic rates were measured using LCpro+ (ADC, UK). The marker compound were investigated and analyzed using HPLC Alliance e2695 and 2998 PDA detector (Waters, USA). Photosynthetic rate (based on 1,600 μ mole of light intensity) was measured in mid-June as follows. The R. multiflora showed 9.8 μ mole․CO2/㎡/s in Iksan and 7.9 μmole․CO2/㎡/s in Namwon. The P. frutescens showed 15.0 μmole․CO2/㎡/s in Iksan and 8.8 μmole․CO2/㎡/s in Namwon. Overall, Photosynthetic rate was higher in Iksan. As a result of analyzing 18 kinds of marker compound, gallic acid and astragalin were found in R. multiflora, caffeic acid and rosmarinic acid were found in P. frutescens. Gallic acid and Astragalin of R. multiflora showed 5.4 ㎎/g and 28.4 ㎎/g in Iksan and 3.2 ㎎/g and 21.6 ㎎/g in Namwon, respectively. Caffeic acid and rosmarinic acid of P. frutescens were 2.7 ㎎/g and 49.7 ㎎/g in Iksan and 2.5 ㎎/g and 33.6 ㎎/g in Namwon, respectively.
Conclusion : Comparing the yield of the harvesting parts by region, both R. multiflora and P. frutescens was higher in Namwon. As a result of quantitative analysis of four detected elements of gallic acid, astragalin, caffeic acid and rosmarinic acid, all four components were high in Iksan. It is considered that this is due to optical environment difference.
Background : Matricaria recutita and Dendranthema indicum are known to have effects such as antioxidant and antihypertensive effects, and they are used as processed food materials. Therefore, it is necessary to examine the possibilities as a natural material for cosmetics. This study was carried out to analyze the volatile flavor components of flowers during cultivation in order to examine the possibility of cosmetics using M. recutita and D. indicum.
Methods and Results : This experiment was carried out from April to October, 2017 at Unbong-eup (500 m above sea level) in Namwon, Jeollabuk-do. M. recutita and D. indicum were planted in late May. Then, flowers were collected in October and volatile flavor components were analyzed by Solid Phase Micro Extraction (SPME) method. Samples of flowers for component analysis were weighed in 0.4 g each and placed in a 20 ㎖ vial. GC/MS was used with Agilent Technologies 7890A/5975C (Agilent, USA). Column and carrier gas were DB-5MS (30 m × 0.25 ㎜ × 0.25 ㎛) and helium gas, respectively. As a result of the analysis of M. recutita flowers, we identified a total of 24 components. The major flavor components were mono terpenes and ketones. The main compounds were β-ocimene (24.08%), artemisia ketone (22.82%), γ-terpinene (16.65%), cis-3-hexenyl isovalerate (3.92%), artemisiatriene (3.72%) and O-cymene (3.44%). As a result of analyzing the composition of D. indicum flower, we identified 33 kinds of ingredients. The major flavor components were monoterpenes and sesquiterpenes. The main compounds were sabinene (19.67%), trans-oiperitol (13.22%), α-phellandrene (10.05%), myrcene (7.53%), cineole (4.36%), α-terpinene (3.60%) and trans-ocimene (3.57%).
Conclusion : We identified 24 flavor components and 33 flavor components in flower of M. recutita and D. indicum, respectively. Eight of the identified or estimated compounds were common to both samples. The reason why the flavor components kinds of M. recutita flowers were few was thought to be due to the influence of collection time. The main flowering period of M. recutita and D. indicum were May and October, respectively, but the use of the samples collected in October seemed to have influenced.
Background : The hyphal growth of Poria cocos are known to grow well under medium temperature(25 - 28 ℃) and acidic(pH 4.0 - 5.0) conditions. Also, it is known that a large difference in the yield of Poria cocos depending on the cultivation method and environment. Therefore, this research was carried out to secure stable yield of Poria cocos using plastic house and bed soil. Methods and Results : The inoculation time was in mid-April 2016 and the inoculation amount was 3/4 lb each in pine trees of 60 (L) × 10 (D) ㎝. The inoculated wood was buried directly in the bed by soil composition and growth characteristics investigated after cultivating in plastic house from April to September, 2016. The composition of the bed soil was 6 treatments using peatmoss, cocopeat and perlite. The combination ratio ranges of peatmoss, cocopeat and perlite were 0 to 80 %, 0 to 60 % and 20 to 60 %, respectively. We assumed that the combination ratio of peatmoss (organic material) 60 % : perlite(inorganic material) 40% is good for the growth of the Poria cocos. In this ratio, instead of peatmoss, the amount of cocopeat was replaced by 20, 40, and 60 %, respectively. The pH and EC range of bed soil was 4.8 - 5.6, 0.7 - 2.2 dS/m, respectively. pH and EC tended to be lower in treatments with only peat moss and perlite. On the other hand pH and EC tended to raise with increasing cocopeat content. Volumetric soil water content and soil temperature were in the range of 13 - 28 % and 20 - 29℃, respectively, during the period of July to September. Soil water content tended to be higher with increasing cocopeat and peatmoss content and soil temperature tended to be lower. The degree of initial hyphal development and sclerotia formation were good in all treatments compared to the control. However, the number of sclerotia was 6 times higher in the ② treatment than in the control. The size of sclerotia was also the best at 12 (L) × 8 (W) ㎝ in the ② treatment. Conclusion : As a result of cultivating Poria cocos in plastic house, growth characteristics were different according to composition of bed soil. The first reason for this result is that the difference of soil moisture content depending on organic matter content affected the soil temperature. Actually, the average soil water content and soil temperature of ① treatment (organic material 80% ) showed 24% and 22℃ respectively during July to September, and no sclerotia was formed. However, in the ② treatment(organic material 60%), the average soil moisture and soil temperature were 14% and 26℃ during July to September, respectively and sclerotia formation was good. Another reason is that the pH of the bed soil affects the formation of sclerotia. Overall, the degree of hyphal development was good in low pH treatments, but no significant difference was found between the pH and the formation of sclerotia.