검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, it was investigated about optical simulation in high brightness and high uniformity direct-type backlight design for medical application. Direct-type backlight has been used high-brightness backlight such as Medical LCD application. The key parameter in designing direct-type backlight was consists of three geometrical dimension such as the distance of two lamps, the gap of lamp and reflection plate and the number of lamps. It has many of variations in optical design and it causes the different properties in backlight system. It shows the best values of above parameters; 26mm of the distance of two lamps, 4.5mm of the gap of lamp and reflection plate and 16 lamps. And we produced the specimen as above condition, and acquired good result in backlight such as the value of the brightness is 6423 nit in center of emission area and less than 5% in brightness uniformity. It shows the effective ways of designing backlight system using optical simulation method for medical LCD application.
        4,000원
        2.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In applying LCD to TV application, one of the most significant factors to be improved is image sticking on the moving picture. Despite the development of technology for fast screen signal processing, it is very difficult to compose a high-quality screen due to the limitation of blinking driving due to the long afterglow time of the backlight. As the Single-LVDS signal system evolves from the Quad Signal Package to respond to 3D, the problem of processing faster signals within a set time is occurring. is becoming In this study, the aim was to realize this operation within 1 frame time by using the blinking backlight, and the existing cold cathode tube lamp was used as the light source. In general, cold cathode tube lamps have a long afterglow time of green, which is responsible for the main emission wavelength, so it is difficult to realize the above characteristics. A backlight capable of flickering within the time frame of the video frame was manufactured, and by using it, it was possible to confirm the effect of resolving the afterimage in a moving image by leaps and bounds.
        4,000원
        3.
        2019.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The ion-beam irradiated lanthanum zinc oxide (LZO) films were conducted as liquid crystal (LC) alignment layer to achieve uniform and homogeneous alignment of LC molecules. Polarized optical microscopy and the pre-tilt angle measurements revealed the alignment characteristics of LC molecules on the LZO film surface. Physical characteristics of the LZO film surface were analyzed by field emission scanning electron microscope and atomic force microscopy. The strong ion-beam irradiation on the LZO film changed surface rougher than before and induced physical anisotropic characteristics. Chemical composition of the LZO film was investigated by X-ray photoelectron spectroscopy and it was revealed that the ion-beam irradiation induced the breakage of the metal-oxide bonds. Due to this, anisotropic dipole moment which related with van der Waals force between LC molecules and alignment layer was induced. Because of this, LC molecules were anchored to the LZO film surface to achieve uniform LC alignment. Collecting the capacitance-voltage curve, residual DC of the LC cell with the LZO films was measured and it was verified that the LC cell with the LZO film had a nearly zero residual DC. Therefore, the ion-beam irradiated LZO film is an efficient method as an LC alignment layer
        4,000원
        4.
        2019.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, we studied the alignment characteristics of liquid crystal on polyimide substrate when irradiated with ion beam in oblique direction on uniformly coated polyimide substrate. The inclined irradiation angle of the ion beam was set to 30 degree, 45 degree and 60 degree and the characteristics were observed for 1 minute and 2 minutes at an ion beam irradiation intensity of 600 to 3,000 eV for each angle. The Alignment of the liquid crystals were observed using a polarized microscope after preparing antiparallel specimens. The pretilt angle of the liquid crystal using the crystal rotation method was measured, and the applicability to actual products was evaluated. Experimental results showed that uniformly aligned liquid crystals could be obtained in samples irradiated at 1 and 2 minutes with an ion beam intensity of 1200 eV or higher when irradiated with 30 degree and 45 degree tilted ion beams. And, at 60 tilted degree, It shows that uniformly aligned liquid crystals could be obtained in samples irradiated at 1 and 2 minutes with an ion beam intensity of 2400 eV or higher. The pretilt angle of the liquid crystal showed the best characteristics when irradiated with ion beam inclined at 45 degrees, and it was confirmed that the pretilt angle was 0.2 to 1.3 degrees, which is usable for horizontally oriented LCD.
        4,000원