검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 6

        1.
        2023.05 구독 인증기관·개인회원 무료
        The characterization of nuclear materials is crucial for global nuclear safeguards efforts, as these materials can potentially be used for illicit purposes. In this study, we evaluated the applicability and performance of the In-Situ Object Counting System (ISOCS) equipment for the characterization and quantification of uranium, including uranium pellets and radioactive wastes. Our methodology involved using ISOCS to measure samples with different enrichments and total amounts of uranium, and to analyze the results in order to evaluate the ISOCS’s effectiveness in accurately characterizing the various uranium samples. To this end, we compared the ISOCS results with those of the Multi-Group Analysis for Uranium (MGAU) system, which is currently used in the field of international safeguards. The results of this study showed that the ISOCS was sensitive enough to analyze small amounts of uranium pellet, with %differences ranging from -0.7% to 19%. However, when analyzing shielded nuclear materials like in concrete waste, the uncertainty was relatively high, with %differences ranging from 11% to 67%. On the other hand, the MGAU system was unable to analyze uranium for the same spectrum, indicating the superiority of the ISOCS in terms of usability. The ISOCS instrument was also found to be effective in analyzing uranium in various types of samples without the need of standard sources. Overall, the findings of this study have important implications for the development of more effective safeguards strategies for the characterization of nuclear materials. The ISOCS instrument could be a reliable tool for analyzing nuclear materials, contributing to global safeguards efforts to reduce the risk of nuclear proliferation.
        2.
        2022.10 구독 인증기관·개인회원 무료
        To ensure the peaceful use of nuclear energy, nuclear safeguards are applied in member states of the International Atomic Energy Agency (IAEA) under the Non-Proliferation Treaty. The two major considerations in implementing nuclear safeguards are effectiveness and efficiency. In terms of efficiency, the IAEA has a great interest in using containment and surveillance (C/S) technology to maintain continuity of knowledge. A representative means of C/S technology is a sealing system to detect tampering. The existing sealing systems used by the IAEA are of limited functionality in realtime verification purposes. To address this limitation, the present study develops a real-time verification sealing system. First, we analyzed the design requirements of a sealing system proposed by various institutions including the IAEA, the U.S. Nuclear Regulatory Commission, and a number of national laboratories and companies. Then, we identified the appropriate design requirements of this system for real-time verification. Finally, the prototype system was developed and tested based on the identified design requirements. The validation tests of the prototype system were performed for anticipated environmental conditions, radiation resistance, and safeguards functionality. Additionally, we are developing user-friendly verification software. The software validation is planned to perform for functionality, performance efficiency, and security. The next step is to develop a commercialized realtime verification sealing system based on the results of validation tests. Using this commercialized system, we plan to evaluate the performance in various actual use cases. Such a system is expected to significantly enhance the efficiency of nuclear safeguards.
        3.
        2022.05 구독 인증기관·개인회원 무료
        For the peaceful use of nuclear energy, the international community has devoted itself to fulfilling its obligations under the Safeguards Agreement with IAEA. In this regard, uranium in a radioactive waste drum should be analyzed and reported in terms of mass and 235U enrichment. In order to characterize radioactive wastes, gamma spectroscopy techniques can be effectively applied. In the case of high-resolution gamma spectroscopy, because an HPGe detector can provide excellent energy resolution, it can be applied to analyze a mixture having a complicated isotopic composition. However, other substances such as wood, concrete, and ash are mixed in radioactive waste with various form factors; hence, the efficiency calibration is difficult. On the other hand, In Situ Object Counting System (ISOCS) has a capability of efficiency calibration without standard materials, making it possible to analyze complex radioactive wastes. In this study, the analysis procedure with the ISOCS was optimized for quantification of radioactive waste. To this end, a standard radioactive waste drum at KEPCO NF and low-level radioactive waste drums at Korea Radioactive Waste Agency (KORAD) were measured. The performance of the ISOCS was then evaluated by Monte Carlo simulations, Multi-Group Analysis for Uranium (MGAU) code, and destructive analysis. As a result, the ISOCS showed good performance in the quantification of uranium for a drum with the homogenized simple geometry and long measurement time. It is confirmed that the ISOCS gamma spectroscopy technique could be used for control and accountancy of nuclear materials contained in a radioactive waste drum.