검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 6

        1.
        2023.11 구독 인증기관·개인회원 무료
        The decommissioning of domestic Nuclear Power Plants (NPPs) in Korea is expected to begin with the Kori-1, which was permanently shutdown in 2017. In addition, Wolsong-1 has been also permanently shutdown, and another type will be the decommissioning project following Kori-1. KHNP is promoting operation and decommissioning projects as the owner of NPPs, and the Central Research Institute (CRI) has been developing a Final Decommissioning Plan (FDP) for the decommissioning license document. The FDP consists of 11 major chapters in the order of overview of the project, characteristic evaluation, safety assessment, radiation protection, decontamination & dismantlement activities, waste management, etc. The contents described in each chapter are individual chapters, but there are also parts that consider the connection with other chapters. The CRI, which develops the FDP for the first decommissioning project in Korea, has spent a lot of time and effort considering this and has been proceeding through trial and error until the present stage. Therefore, this study aims to explain the current status of FDP, a license document for domestic decommissioning projects, and the link between major input data in major chapters. It can be said that System, Structure, and Components (SSCs) subject to dismantling are considered as the scope of FDP. Chapters that perform estimations on these dismantling targets may include safety assessments, exposure dose assessments for workers and residents, and waste inventory assessments. Therefore, an important part of performing the estimation works is to consider the entire scope of decommissioning activities, and as a way, it can start from data based on the inventory data. After generating the inventory data, the waste treatment classification for the inventory is designated by reflecting the results of the characterization. In addition, for cost estimation, the cost of decommissioning project is predicted by inputting some data (i.e., UCF) such as work process, number of workers, and time required for each item with data reflected in quantity and characterization. After that, based on these inventory, characterization, and UCF data, accident scenarios and industrial safety evaluation are performed for the safety assessment. The worker exposure dose is estimated by considering the dose rate of the workspace with these data. In the case of the amount of waste, the final amount of waste is estimated by considering the factors of reduction and decontamination. In summary, the main estimation contents of FDP are evaluated by adding elements required for the purpose of each chapter from data combined with inventory, characterization, and UCF, so the contents of these chapters are based on the logic of considering the entire scope of decommissioning in common.
        2.
        2023.05 구독 인증기관·개인회원 무료
        One aspect of securing safety from the operation of Nuclear Power Plants (NPPs) is to evaluate the impact on residents at the facility’s exclusive area boundary to confirm that the radiological risk is below the allowable level. Normally, the risks from gaseous and liquid effluents are evaluated during the operation of facilities. Meanwhile, in order to be approved for the decommissioning plan, the environmental risks caused by activities during dismantling is also evaluated. Therefore, this study aims to investigate the exposure pathways considered in evaluating the risks to nearby residents from the operation and decommissioning of nuclear facilities and to examine the differences. The emission rate by radionuclide is calculated by evaluating the amount of leak from nuclear fuel during the operation of the facility through design data of the NPP. Each of the liquid and gaseous effluents is calculated, and the exposure dose received by nearby residents is calculated by considering the exposure pathways with these emission rates. In order to initiate the decommissioning of nuclear facilities, approval of the Final Decommissioning Plan (FDP) must be obtained. The FDP chapter shall describe the results of the environmental impact assessment of the decommissioning. It will not differ significantly in the exposure pathways during operation. However, the decommissioning of nuclear facilities is ultimately to remove Systems, Structures, and Components (SSCs) and to remove the regulation of the Nuclear Safety Act by ensuring that sites and remaining buildings meet the criteria for the license termination. In terms of release and reuse of nuclear facilities, the exposure dose to be considered in evaluating the dose can be considered for two main types: the site and the remaining building. The factors affecting the exposure pathways considered in assessing the environmental impacts considered in the operation and decommissioning of nuclear facilities are due to gaseous and liquid effluents. However, the difference should reflect the impact of NPP operations and decommissioning activities when evaluating the amount of radionuclides released by these effluents. Decommissioning should consider the impact after decommissioning, which is the effect of the receptor by radionuclides remaining on the site and in the remaining buildings. At this time, the effects of the source from the soil and the source from the surface of the building should be considered for the external and internal exposure pathways.
        3.
        2023.05 구독 인증기관·개인회원 무료
        Wolsong Unit 1 is about 679 MW Pressurized Heavy Water Reactor (PHWR). Canada AECL was responsible for Nuclear Steam Supply System (NSSS) design and supply. Wolsong Unit 1 was operated from 1983 to 2019. Currently, Wolsong Unit 1 is under safety management after permanent shutdown. Wolsong unit 1, a heavy water reactor, has the following characteristics. • Unlike Light Water Reactor, vertical reactors, Heavy Water Reactor is installed horizontally. • The internal structure of the reactor is more complex than that of a light water reactor (380 pressure tubes in reactor as called Calandria) • The Calandria Vault, a large concrete structure filled with light water, is located outside of Calandria In the case of the decommissioning plan of PHWR in Canada, they have adopted a deferred decommissioning strategy that decommissioning begins after permanent shutdown and long-term safety management (30 to 40 years). So, Decommissioning of PHWR in Canada is expected to start in the 2050s. Nuclear Safety Act stipulates that if a commercial nuclear power plant is permanently suspended, the utility must submit a Final Decommissioning Plan (FDP) within 5 years. So, KHNP, the utility, is developing the FDP for Wolsong Unit 1 and have a plan to submit it to the government by the end of 2024. And then licensing review is expected to take at least two years. The key milestone for decommissioning project has a plan to start decommissioning in 2027 and complete it by 2034, but this is flexible depending of the government’s approval for decommissioning and the completion of prerequisites such as spent fuel transfer, etc. KHNP has prepared a strategy and system consisting of three areas such as R&D, Engineering and licensing document development to prepare the final decommissioning plan for Wolsong Unit 1. The promotion system for the preparation of the FDP for Wolsong Unit 1 is consisted of Engineering (HAS Characterization, Process/Work Package/Cost Estimation, Dismantling Safety Evaluation, Radiological Environmental Report, Radioactive Waste Treatment and Facility Construction), R&D (COG cooperation, KHNP R&D Results), Kori unit 1 lessons learned, etc. KHNP have the plan that the FDP Draft development by the end of 2023, reflecting engineering services results, R&D results, COG technical cooperation results and lessoned learned on Kori Unit 1. After collecting opinions from residents through a public hearing, the FDP will be submitted to the government by the end of 2024. It is expected that there will be many difficulties in the development process as it is the world’s first FDP development for the commercial Pressurized Heavy Water Reactors.
        4.
        2023.05 구독 인증기관·개인회원 무료
        Kori Unit 1 is about 600MW Pressurized Light Water Reactor as WH type. KHNP got an approval for construction and operation of Kori unit 1 on May 31, 1972 and started commercial operation from Apr. 29, 1987. And then, it was decided to permanently suspend it on Jun. 18, 2017 after 40 years of commercial operation. The Nuclear Safety Act stipulates that if a commercial nuclear power plant is permanently suspended, the utility must submit a Final Decommissioning Plan (FDP) within 5 years. So, KHNP, the utility, developed a FDP for Kori Unit 1 and submitted it to the government in May 2021. In South Korea, the FDP is to be prepared in accordance with the relevant notices and consists of 11 major chapters such as (1) Decommissioning Plan Overview, (2) Project management, (3) Status of Site and Environmental, (4) Decommissioning Strategies and Method, (5) Ease of Decom. Design characteristic, (6) Safety Analysis, (7) Radiation Protection, (8) Decontamination and Dismantling, (9) Radioactive Waste Management, (10) Environmental Impact Analysis, (11) Fire Protection and (12, 13) Etc., References and Glossary. KHNP has prepared a strategy and system consisting of three areas such as R&D, Engineering and licensing document development to prepare the final decommissioning plan for Kori Unit 1. The promotion system for the preparation of the FDP for Kori Unit 1 is composed of Engineering (HAS Characterization, Dismantling Safety Evaluation, Radiological Environmental Report, Radioactive Waste Treatment and Facility Construction), R&D(KHNP R&D Results such as Process/Work Package /Cost Estimation, Safety Analysis, Contamination and Exposure, Guide for Detailed Characteristic, Site Safety Analysis, RV & RVI Dismantling Process, etc.), Overseas case lessons learned(Taiwan unit 1 NPP FDP and Spain Zorita NPP FDP analysis) and Development of Licensing Document. KHNP completed the initial completion of the Final Decommissioning Plan for Kori Unit 1 in March 2020 and carried out collecting residents’ opinions through public hearings. And then, KHNP supplemented the results of the residents’ opinions and applied for license to the Nuclear Safety and Security Commission in May, 2021. Now, KHNP are responding to the FDP licensing review.