검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 8

        1.
        2017.05 서비스 종료(열람 제한)
        Background : Panax ginseng C.A. Meyer is a perennial herb belongs to the family Araliaceae. Wild-cultivated ginseng (WCG) is a specific type of ginseng in Korea which cultivated on artificial forest cultivation method. To obtain a WCG which is similar to wild ginseng (WG), this method usually performed in a mountain using seeds or seedlings of cultivated ginseng (CG) and WG. WCG is very expensive because it is difficult to cultivate. However, systematic cultivation method have not yet been developed compared to high added value. Furthermore, very high price of WCG caused the problem that Panax notoginseng or Panax quinquefolium are sold as WCG in Korean market. In this study, we analyzed the genetic diversity of WCG collected from five areas in Korea using SSR markers. Methods and Results : WCG samples were collected from five areas in Korea (Bucheon, Cheongju, Hoengseong, Judeok and Ulsan). DNA extraction was performed using CTAB method. SSR markers were collected from the published papers. After test PCR using the markers, one of the primer pair was labeled with fluorescence dye (FAM, NED, PET, or VIC) and GeneScan analysis were performed. DNA amplification was conducted using T-100 Thermal Cycler (Bio-Rad). PCR products were separated by capillary electrophoresis on the ABI 3730 DNA analyzer (Applied Biosystems). Conclusion : Eight SSR markers were collected from the published literature and used for the analysis. From the 8 tested SSR markers, 7 SSR markers showed polymorphism between varieties. GenScan analysis were performed using the selected SSR markers to analyze the phylogenetic relationship of WCG. From the results, WCG cultivated in Korea showed that they have a very diverse genetic background.
        2.
        2017.05 서비스 종료(열람 제한)
        Background : Wild-cultivated ginseng (WCG) prices are very different according to root ages. Generally, two methods are used to discriminate the root ages of Panax ginseng C.A. Meyer. The first method is the yearly determination method by the ring dyeing method, and the second method is the confirmation the number of stem vestiges in the rhizome. In this study, we analyzed the agronomic and growth characteristics of the WCG cultivated in Korea. In this study, to determine the appropriate root ages discrimination method for the determination of the root ages of WCG, the root ages of WCG and cultivated ginseng was examined. Methods and Results : We examined the cultivated ginseng (CG) and WCG that was collected and sold by regional groups at the Korean market. WCG does not form annual rings, which are clear and regular in wild ginseng. Therefore, it is impossible to identify the age of WCG by using the annual growth rings staining method. However, the age can be estimated by determining the number of stem vestiges in the rhizome. Conclusion : From the results of the Study on identification of root age for quality evealuation in WCG in Korea. Appropriate root ages discrimination method of WCG was confirmation the number of stem vestiges in the rhizome.
        3.
        2017.05 서비스 종료(열람 제한)
        Background : Panax ginseng C.A. Meyer is a representative medicinal plants and it has been used in traditional medicine because the plant have many effective component such as saponins. To obtain a wild-cultivated ginseng (WCG) which is similar to wild ginseng (WG), this method usually performed in a mountain using seeds or seedlings of cultivated ginseng (CG) and WG. WCG is very expensive because it is difficult to cultivate. However, systematic cultivation method have not been developed compared to their high added value. Furthermore, very high price of WCG caused the problem that Panax notoginseng or Panax quinquefolium are sold as WCG in Korean market. This is concerned as a serious problem to consumers. In this study, we analyzed the agronomic and growth characteristics of the WCG cultivated in Korea. Methods and Results : We examined the WCG that was collected and sold by regional groups at the Korean market. The root age, growth conditions, and quality level of the cultivated WCG were confirmed. WCG samples were collected from five areas in Korea (Bucheon, Cheongju, Hoengseong, Judeok and Ulsan). The main root diameter, root shape index, rhizome length, and root weight showed high level of variation and they did not form annual rings. Conclusion : Agronomic and growth characteristics of WCG showed high variations according to cultivating regions.
        4.
        2016.10 서비스 종료(열람 제한)
        Background : Medicinal crop has been used in the traditional Asian medicinal methods. From ancient times, various kinds of medicinal crop are being cultivated in East Aisa including Korea, China and Japan. In Korea, they used a variety of medicinal plants in folk medicine and oriental medicine since ancient times. Molecular markers can be widely used in a variety of settings such as effective-loci estimation, genetic-diversity characterization, allelic-effect studies, gene-flow studies, quantitative-trait locus (QTL) mapping, and evolutionary studies. The genetic analyses of crops require large numbers of useful molecular markers for genetic or QTL identification, comparative mapping and breeding. Studying the genetic diversity and genetic relationship of crops can assist breeders. Crop genetics within a breeding program enable the economic and effective cultivar development. We tried to develop a variety of molecular markers from Angelica gigas genomic sequences for genetic studies and breeding. Methods and Results : A. gigas resources cultivated in Republic of Korea were collected. Fresh leaves were ground with liquid nitrogen and gDNA was extracted using a DNeasy Plant Mini kit (Qiagen, Valencia, CA, USA). We sequenced the whole genomes of five A. gigas accessions using Illumina HiSeq 2500 platform and identified genomic Simple Sequence Repeat (SSR) and InDel markers. DNA amplification was conducted using the PCR system (Bio-Rad T-100 Thermal Cycler). PCR products were separated by capillary electrophoresis on the ABI 3730 DNA analyzer (Applied Biosystems) and Fragment analyzer automated CE system (Advanced Analytical Technologies, Ankeny, IA, USA). Conclusion : We developed novel SSR and InDel markers from A. gigas genomic sequences for further genetic studies and breeding.
        5.
        2015.07 서비스 종료(열람 제한)
        Angelica gigas, also called Dang Gui or Korean Angelica, is a major medicinal herb used in Asian countries such as Korea, Japan and China. In Korea, we are using the roots of A. gigas., but, they are using Angelica sinensis in China and using Angelica acutiloba. in Japan to obtain many active constituents such as dercursin, decursinol angelate, nodakenetin, nodakenin, umbelliferone, β-sisterol, or α-pinene. The plants of the Angelica family are used to improve gynecological health. The biggest problem in the cultivation of A. gigas is bolting. If the bolting occurs, A. gigas can not be used as a medicinal component because the roots are lignified. In this study, 11 A. gigas genetic resources in Korea; 1. Hwangje variety, 2. Sungwoo Jongmyo company, 3. Bonghwa No. 1, 4. Bonghwa No. 2, 5. Bonghwa No. 3, 6. Bonghwa No. 4, 7. Jechun local variety, 8. Jirisan local variety, 9. Manchu variety in Eumseong, 10. Manchu variety in Bonghwa, 11. Jinbu local variety, were collected and performed phylogenetic analysis using RAPD molecular markers.
        6.
        2015.07 서비스 종료(열람 제한)
        Codonopsis lanceolata is used as a natural medicine or vegetables. It originates in East Asia such as Korea, Japan and China. Similar to Panax ginseng, C. lanceolata contains saponins as effective components. C. lanceolata is cultivated in many regions of South Korea. But, no variety was developed yet and the origin discrimination in the distribution market of C. lanceolata became a problem. In this study, we collected 20 C. lanceolata regional groups; Hoengseong, Wonju, Samcheok, Chuncheon, Pyeongchang, Hongcheon, Yongin, Yangpyeong, Danyang, Chungju, Bonghwa, Ulleung, Yeongju, Sancheong, Muju, Gwangyang, Sinan, Hwasun, Jeju-si and Seogwipo-si, and tested the genetic relationship using RAPD molecular markers. The genomic DNA was extracted using CTAB and the RAPD analysis was performed using 32 primers of Operon Technologies. NTsys-PC program was used for the phylogenetic analysis of the data.