검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        1.
        2022.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the removal efficiency of PFCs(perfluorinated compounds) in the GAC(granule activated carbon) process based on the superheated steam automatic regeneration system was investigated in laboratory scale and pilot-scale reactor. Among PFCs, PFHxS(perfluorohexyl sulfonate) was most effectively removed. The removal efficiency of PFCs was found to be closely related to the EBCT, and the removal efficiencies of PFOA(perfluorooctanoic acid), PFOS(perfluorooctyl sulfonate), and PFHxS were 43.7, 75, and 100%, respectively, under the condition of EBCT of 6 min. Afterward, PFOA, PFOS, and PFHxS exhibited the earlier breakthrough time in the order. After that, GAC was regenerated, and the removal efficiency of the PFCs before and after regeneration was compared. As a result, it was shown that the PFCs removal efficiency in the regenerated GAC process were higher, and that of PFOA was improved to 75%. The findings of this study indicate the feasibility of the superheated steam automatic regeneration system for the stable removal of the PFCs, and it was verified that this technology can be applied stably enough even in field conditions.
        4,600원
        2.
        2021.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The activity of anaerobic ammonium oxidation (ANAMMOX) immobilized in synthetic media (Poly Ethylene Glycol, PEG) and granular form was evaluated comparatively to investigate the effect of influent nitrogen concentration and exposure of oxygen. In ANAMMOX granule reactor, when concentration of influent total nitrogen increased to 500mg/L, removal efficiency of ammonium, nitrite and nitrate were shown to 90.5±6.5, 96.6±4.9, and 93.2±6.1%, respectively. In the case of the PEG gel, it showed lower nitrogen removal performance, resulting in that the removal efficiency of ammonium, nitrite and nitrate were shown to 83.3±13.0, 96.4±6.1, and 90.3±7.5%, respectively. In second step, when exposed to oxygen, the nitrogen removal performance in the ANAMMOX granule reactor also remained stable, but the activity of PEG gel ANAMMOX was found to be inhibited. Consequently, the PEG gel ANAMMOX was a higher sensitivity than that of granular ANAMMOX with two variables applied in this study.
        4,000원
        3.
        2018.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The lack of seed sludges for Ammonium Oxidizing Bacteria (AOB) and slow-growing ANaerobic AMMonium OXidation (ANAMMOX) bacteria is one of the major problem for large-scale application. In this study, 24m3 of single-stage SBR (Sequencing Batch Reactor) was operated to remove nitrogen from reject water using AOB and ANAMMOX bacteria cultivated from activated sludge in the field. The ANAMMOX activity was found after 44 days of cultivation in the ANAMMOX cultivation reactor, and then 0.66 kg N/m3/d of the nitrogen removal rate was achieved at 0.78 kg N/m3/d of the nitrogen loading rate at 153 days of cultivation. The AOB cultivation reactor showed 0.2 kg N/m3/d of nitrite production rate at 0.4 kg N/m3/d of nitrogen loading rate after 36 days of operation. The cultivated ANAMMOX bacteria and AOB was mixed into the single-stage SBR. The feed distribution was applied to remove total nitrogen stably in the single-stage SBR. The nitrogen removal rate in the single-stage SBR was gradually enhanced with an increase of specific activities of both AOB and ANAMMOX bacteria by showing 0.49 kg N/m3/d of the nitrogen removal rate at 0.56 kg N/m3/d of the nitrogen loading rate at 54 days of operation.
        4,000원
        5.
        2014.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Immobilization of anaerobic ammonium oxidizing bacteria has been studied to enhance the biomass retention of the slowly growing bacteria and the process stability. The purpose of this study was to compare the nitrogen removal efficiency of granular and immobilized anammox bacteria with poly vinyl alcohol and alginate. The specific anammox activity of the granular, homoginized and immobilized anammox bacteria were 0.016±0.0002 gN/gVSS/d, 0.011±0.001 gN/gVSS/d and 0.007±0.0005 gN/gVSS/d, respectively. Although the activity decreased to 43.7 % of the original one due to low pH and O2 exposure during the homogination and the immobilization, it was rapidly recovered within 7 days in the following continuous culture. When synthetic T-N concentrations of 100, 200, 400, 800 mg/L were fed, the immobilized anammox bacteria showed higher nitrogen removal efficiencies at all operational conditions than those of granular anammox bacteria. When the sludge retention time was shorten below 30.7 days and the reject water was fed, the nitrite removal efficiency of the granular anammox bacteria dropped to 8 % of the initial value, while that of the immobilized anammox bacteria was maintained over 95 % of the initial one. The immobilization with poly vinyl alcohol and alginate would be a feasible method to improve the performance and stability of the anammox process.
        4,300원