검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2020.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study was conducted to develop a high-moisture food waste dryer that uses steam as a direct heat source to improve the drying speed. Another objective was to verify its performance through experiments. A dryer with a drying capacity of 10,000 kg/hr, which uses steam from an incineration plant as a drying heat source, was fabricated. The performance and applicability of the dryer were verified through drying experiments, in which the food waste collected from large restaurants near the incineration plant was used as the experimental material. The drying experiment results showed that the input steam temperature increased by 21℃ from approximately 145℃ to 166℃ compared to the case in which drying was performed by converting steam into heated air. The drying speed increased by 1.5 times from approximately 0.63 to 0.94 %/hr, and drying up to approximately 20%(wb) moisture content was possible. The drying energy rate, which represents the ratio of the energy consumed for drying to the input energy, increased by approximately ten times from 7.17% to 70.87%. The total drying time still remained approximately 100 hr due to the re-condensation of moisture. When steam was directly used as a drying heat source to improve the drying speed of food waste containing high moisture, the drying speed, water content after drying, and drying energy rate were clearly improved compared to the case in which steam was converted into heated air for use. Therefore, it was deemed necessary to develop a dryer that directly uses steam from an incineration plant for drying. To shorten the total drying time, it is necessary to develop a device that solves the problem of moisture condensation in the dryer.
        4,000원
        2.
        2018.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In Korea, the daily waste production in 2015(excluding specified waste) was 404,812 tons, of which household waste accounted for 12.7%(51,247 tons/day). Total household food and vegetable waste amounted to 1,120 tons/day; of this, 70% of was ultimately used as feed or fertilizer and 30% was buried. In this study, a drying unit was developed to enable the production of solid refuse fuel using high-moisture food waste, and its performance was examined through an experiment. Thus, a laboratory pyrolysis system with a drying capacity of 500 kg/hr was manufactured. Food wastes were collected from a company cafeteria and from Changwon City and used for experiment. The drying characteristics of the food waste were examined depending on the input temperature of the drying air. The results of the food waste drying experiment showed that the total required drying time was approximately 20 hours, and the drying speed was approximately 2.90 %/hr. The drying time was five hours longer than the research target value(15 hours per batch). However, the time was approximately 16 hours when the preheating and cooling times required for the input and output were excluded, which was close to the research target value. The drying time did not show a large difference depending on the temperature of the input drying air. Drying time was 21 hours at 155℃, and thus drying operation would be possible without the use of high-temperature air(more than 200℃) when waste heat is utilized in the future. It is thought that rather than the temperature of the input air, it is the contact area between the input air and the food waste that has a significant effect on reducing the drying time.
        4,000원