검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 6

        4.
        2020.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the effects of kaolin addition on the properties of reticulated porous diatomite-kaolin composites are investigated. A reticulated porous diatomite-kaolin composite is prepared using the replica template method. The microstructure and pore characteristics of the reticulated porous diatomite-kaolin composites are analyzed by controlling the PPI value (45, 60, and 80 PPI) of the polyurethane foam (which are used as the polymer template), the ball-milling time (8 and 24 h), and the amount of kaolin (0–50 wt. %). The average pore size decreases as the amount of kaolin increases in the reticulated porous diatomite-kaolin composite. As the amount of kaolin increases, it can be determined that the amount of inter-connected pore channels is reduced because the plate-shaped kaolin particles connect the gaps between irregular diatomite particles. Consequently, a higher kaolin percentage affects the overall mechanical properties by improving the pore channel connectivity. The effect of kaolin addition on the basic properties of the reticulated porous diatomite-kaolin composite is further discussed with characterization data such as pore size distribution, scanning electron microscopy images, and compressive strength.
        4,000원
        5.
        2017.11 구독 인증기관·개인회원 무료
        Ceramic membranes can be applied under extreme operating conditions such as low pH, high pressure and high temperature. In particular SiC has excellent mechanical properties and also has excellent properties related to membrane performance. However, high processing temperature increases cost of SiC products and thus limit’s its use. In this study oxidation bonding technique was used to fabricate cost-effective SiC microfiltration membrane at low temperature. The oxidation behavior at different thermal treatments was related with pore morphology and ultimately the membrane permeability. We have found that the membrane made by coating of oxidation bonded SiC layer over clay-bonded SiC support, sintered at 1000-1100°C could make a defect-free microfiltration membrane with pure water permeability above 700 LMH per bar. The membrane has narrow pore size distribution with average pore size about 0.1 μm.
        6.
        2016.05 구독 인증기관·개인회원 무료
        Ceramic membrane technology has been remarkably progressed for water treatment. The advantages were founded on the intrinsic properties of ceramics. Membrane fouling is regarded as a serious obstacles which deteriorate the stable purification process. The surface modification of ceramic membranes would be necessary to relieve the severe membrane fouling and to improve filtration efficiency. We aimed to develop a unique ceramic membrane with resistance to fouling. The ceramic membranes are subjected to chemical modification, and the surface charge effects were extensively investigated.