Recently developed crosslinked TR (XTR) membranes as an advanced TR material exhibit high permeability and high selectivity stemming from higher rigidity due to a simultaneous and synergetic reaction of crosslinking and thermal rearrangement. The precursor crosslinkable co-HPI precursor can be dissolved in a wide range of commercial solvents indicative of an excellent processibility. Herein, a systematic spinning process, using a newly designed crosslinkable co-HPI precursor to fabricate defect-free XTR-PBOI hollow fiber membranes with inner skin layer will be discussed based on the phase inversion kinetics of nonsolvent-induced phase separation (NIPS) method.
이산화탄소 분리막은 이산화탄소에 대한 선택성이 우수하면서도 투과성이 뛰어나야 그 성능을 제대로 발휘할 수 있는데, 대부분의 고분자 분리막들은 투과도 및 선택도에 있어 매우 뚜렷한 상충관계를 보이고 있으며, 이러한 상충관계를 극복할 수 있는 고투과성 및 고선택성을 갖는 분리막의 개발이 시급하다 할 수 있다. 근래 PEG (polyethylene glycol)가 이산화탄소에 대한 투과선택도가 뛰어난 것이 밝혀져 많은 연구가 진행되고 있으며, 본 연구는 이에 더해 내구성이 우수한 표면고착된 PEG 함유 고분자 복합막을 제조하여 이의 이산화탄소에 대한 분리에 대하여 발표한다.
Thermally rearranged polybenzoxazole (TR-PBO) membranes has a excellent gas separation properties due to its high fractional free volume and suitable cavity size.1) Furthermore, thermally rearranged poly(benzoxazole-co-imide) (TR-PBOI) materials show the improved mechanical strength and gas separation properties.2) In this study, TR-PBOI asymmetric hollow fiber membranes was fabricated via NIPS method. In detail, the influence of co-solvent system and polymeric additives with various molecular weight on gas separation performance was observed. For further performance optimization, dope & bore flow rate and coagulation temperature were controlled.3) The characterization on membranes was conducted by FE-SEM, pure and mixed gas permeation test with micro-GC system.