검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2023.11 구독 인증기관·개인회원 무료
        Due to the necessity of isolating spent nuclear fuel (SNF) from the human life zone for a minimum of 106 years, deep geological disposal (DGD) has emerged as a prominent solution for SNF management in numerous countries. Consequently, the resilience of disposal canisters to corrosion over such an extended storage period becomes paramount. While copper exhibits a relatively low corrosion rate, typically measured in millimeters per million years, in geological environment, special attention must be directed towards verifying the corrosion resistance of copper canister welds. This validation becomes inevitable during the sealing of the disposal canister once SNFs are loaded, primarily because the weld zone presents a discontinuous microstructure, which can accelerate both uniform and localized corrosion processes. In this research, we conducted an in-depth analysis of the microstructural characteristics of copper welds manufactured by TIG-based wire are additive manufacturing, which is ideal for welding relatively large structures such as a disposal canister. To simulate the welds of copper canister, a 12 mm thick oxygen-free plate was prepared and Y and V grooves were applied to perform overlay welding. Both copper welding zones were very uniform, with negligible defects (i.e., void and cracks), and contained relatively large grains with columnar structure regardless of groove types. For improving microstructures at welds with better corrosion resistance, the effect of preheat temperature also investigated up to 600°C.
        2.
        2023.05 구독 인증기관·개인회원 무료
        Since spent nuclear fuel (SNF) should be isolated from the human life zone for at least 106 years, deep geological disposal (DGD) is considered a strong candidate for SNF management in many countries. Therefore, a disposal canister should be nearly immune to corrosion in such a long-term storage environment. Even though copper has a low corrosion rate of a few millimeters per million years in geological environments, the corrosion resistance of the copper welds must be preferentially validated, which inevitably occurs during the sealing of the disposal canister after the SNF is loaded. This is because the weld zone is a discontinuous area of microstructure, which can accelerate uniform and localized corrosion. In this study, the microstructural characteristics of copper welds in different welding conditions such as friction stir welding, electron beam welding, cold spray, were analyzed, focusing on the formation of microstructure, which affects resistance to corrosion. In addition, the microstructure and corrosion properties of the copper weld zone manufactured by recent wire-based additive manufacturing (AM) technology were experimentally evaluated. From this preliminary test result, it was found that the corrosion characteristics of the welds produced by the AM process using wire are comparable to those of the conventional forged copper plate.