검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 7

        1.
        2004.12 KCI 등재 서비스 종료(열람 제한)
        In Korea, production of super sweet corn has been economically feasible and is substituting for traditional sweet corn due to better flavor in recent years. Major limiting factors for super sweet corn production are low field emergence and low seedling vigor. The optimum water potential (WP) for the priming of normal and aged seeds of dent, sweet (su) and super sweet (sh2) corns was studied to improve low seed quality. Seeds were primed at 0, -0.3, -0.6, -0.9, and -1.2 MPa of polyethylene glycol (PEG) 8000 solution at 15~circC for 2 days. Priming effects differed depending on the type of corn, seed quality, and WP of PEG solution. Although WP of priming solution did not influence the emergence rate of extremely high quality normal dent corn seeds, it reduced time to 50~% emergence (T50) and increased plumule weight. In contrast, the emergence rate of aged field corn was improved by seed priming at 0 MPa and plumule weight and α-amylase activity was enhanced. The optimum WP for both normal and aged sweet and super sweet corn seeds was between -0.3 and -0.6 Mpa. At the optimum WP emergence rate, α-amylase activity, and content of DNA and soluble protein increased, while T50 and leakage of total sugars and electrolytes reduced.
        2.
        2004.12 KCI 등재 서비스 종료(열람 제한)
        The production of sweet (su) and super sweet corns (sh2) has been economically feasible in Korea in recent years. Major factors limiting super sweet corn production are low germination and low seedling vigor. Since seed quality is closely related to seed maturity, the optimum harvest time for the seed production of sweet and super sweet corns was studied and the quality of seeds with varying maturities was investigated in 2001 and 2002 cropping seasons. The parents of the sweet corn seeds were Hybrid Early Sunglow and 'Golden Cross Bantam 70' and those of super sweet corn were Xtrasweet 82 and 'For­tune'. Seeds were harvested at 21, 28, 35, 42, 49, and 56 days after silking (DAS). As the seeds developed, seed weight of sweet corn increased and the seed moisture content decreased faster than that of super sweet corn. Germination rates of sweet corn seeds harvested 21 and 28 DAS at 25~circC and emergence rates in the cold soil test were significantly lower than those of seeds harvested after 42 DAS in both years. Although the germination rates of super sweet corn seeds with varying maturities showed similar patterns as sweet corn seeds at 25~circC , the emergence rate of super sweet corn seeds in cold soil test continuously increased with seed maturity. This suggests that seed quality of super sweet corn should be tested in a cold soil test to estimate field emergence. As the seeds developed, leakage of total sugars and electrolytes from the both sweet and super sweet corn seeds decreased up to 42 or 49 DAS. The α-amylase activities of both sweet and super sweet corn seeds increased with seed maturity from 21 to 35 or 49 DAS depending on genotype and year. The optimum harvest time for the seed production of sweet corn was 42 DAS and 49 DAS for super sweet corn considering emergence rate and plumule dry weight in the cold soil test, leakage of sugars and electrolytes from the seeds, and α-amylase activity.
        3.
        2002.12 KCI 등재 서비스 종료(열람 제한)
        In order to determine the optimum harvest time for the seed production of inbreds and hybrids in silage corn, the ears of sib-pollinated 'KS5', 'KS7rhm', and 'Ga209' and cross-pollinated 'KS5' ~times 'KS6' (Suwon19), 'KS7 rhm' ~times 'KSl17' (Suwonok), and 'Ga209' ~times 'DB544'(Kwanganok) were harvested at the one-week intervals from 4 to 10 weeks after silking. The optimum harvest time for the seed production for 'KS5', 'KS5' ~times 'KS6', 'KS7 rhm', and 'KS7rhm' ~times 'KS117' was 7 weeks after silking considering both emergence rate and plumule growth in cold test. Although earlier harvested seeds showed similar germination rate as the seeds harvested at the optimum time at 25~circC , their emergence rate were lower in cold test. Seed weight and α -amylase activity of earlier harvested seeds were lower compared to those of seeds harvested at the optimum time, while leakage of total sugars and electrolytes were higher. However, the later harvested seeds showed lower germination rates at 25~circC and emergence rates in cold test probably due to the lower α -amylase activity although they showed increased seed weight and reduced leakage of total sugars and electrolytes. In contrast, the emergence rate of 'Ga209' and 'Ga209' ~times 'DB544' in cold test increased up to 10 weeks after silking probably due to the increased seed weight and α -amylase activity and reduced sugar and electrolyte leakages during the germination. The cross-pollinated F1 hybrid seeds showed higher germination and emergence rates at 25~circC and in cold test, and higher plumule growth and α -amylase activity compared to those of sib-pollinated inbreds.
        4.
        2002.09 KCI 등재 서비스 종료(열람 제한)
        The performance of 7 sugary (su) and 12 shrunken-2 (sh2) sweet com hybrids which are commercially grown in the United States was tested in Korea. The 100-seed weight of su hybrids (16.5-23.6 g) was much heavier compared to that of sh2 hybrids (10.9-17.5 g). The germination rate of su and sh2 hybrids at 25~circC ranged 93.3-100% and 86.7-98.9%, the emergence rate of su and sh2 hybrids in cold test ranged 78.9-97.8% and 62.2-97.8%, and field emergence rate of su and sh2 hybrids ranged 74.4-100.0% and 79.9-98.2%, respectively. In su hybrids, there was a significantly positive correlation between germination rate at 25~circC and emergence rate in cold test or early growth. In contrast, in sh2 hybrids seed weight was positively correlated with early plant growth, while not with the germination rate at 25~circC or emergence rate in cold test and field. Most sh2 hybrids produced larger and more marketable ears compared to su hybrids although there were significant differences among the hybrids in the same genotype. At harvest (24 days after pollination) soluble solids content of su hybrids (24.3-27.1 Brix %) was much higher than that of sh2 hybrids (13.8-18.0 Brix %), while total sugars of sh2 hybrids (21.4-28.6% on the dry weight basis) was much higher compared to su hybrids (2.4-15.9%). Considering germination and emergence rates, marketable ear production, and total sugar content, 'GCB 70' and 'Sweet Satin' in su hybrids and 'Ice Queen', 'Aspen', 'Sweet Magic', 'Bandit', 'Xtrasweet 82', 'Aspen', and 'Cambella 90' in sh2 hybrids performed better than other hybrids.