The oral microbiome plays a vital role in maintaining oral and overall health and affects immune responses, digestion, and pathogen suppression. While most studies focus on age groups prone to specific conditions, such as dental caries in children or periodontal disease in older adults, limited data exist on preschool-aged children and young adults. This study investigates the composition and diversity of the oral microbiome between these age groups for enhanced understanding of a healthy oral microbiome. Microbial samples from the supragingival regions of 41 children and 31 young adults in Korea were analyzed using 16S rRNA gene sequencing. Alpha and beta diversity were assessed, and linear discriminant analysis effect size (LEfSe) identified taxa with significant differences in abundance between the groups. No significant differences in alpha diversity were observed between children and young adults however, beta diversity analysis revealed notably compositional differences. At the phylum level, Firmicutes were more abundant in children, whereas Actinobacteria were more prevalent in young adults. Genera such as Veillonella and Lautropia were more abundant among children, whereas Haemophilus and Rothia were more common among young adults. LEfSe analysis identified Veillonella rogosae and Lautropia mirabilis as more abundant in children, whereas Haemophilus parainfluenzae and Rothia dentocariosa were more prevalent in young adults. The observed differences suggest that children’s microbiomes are associated with biofilm development, while young adults’ microbiomes involve biofilm maturation and immune modulation. These findings highlight the age-related shift in oral microbiome composition, emphasizing the importance of monitoring these changes to support long-term oral health.
Endoplasmic reticulum (ER) stress, caused by the accumulation of misfolded or unfolded proteins, activates the unfolded protein response to maintain cellular homeostasis and is implicated in bacterial infections. This study investigated ER stress activation in THP-1-derived macrophages infected with oral bacteria Porphyromonas gingivalis , Prevotella intermedia , Aggregatibacter actinomycetemcomitans , and Streptococcus oralis at an multiplicity of infection of 50 for 4 hours. mRNA and protein expressions related to ER stress were analyzed by real-time polymerase chain reaction and Western blot, while pro-inflammatory cytokines were measured using enzymelinked immunosorbent assay. P. gingivalis induced the highest mRNA expression of XBP1 and PERK, whereas A. actinomycetemcomitans showed elevated GRP78, ATF6, IRE1α, ATF4, and CHOP. P. intermedia strongly expressed PERK, while S. oralis showed higher GRP78, PERK, ATF4, and CHOP expression. Protein analysis revealed S. oralis had the highest phosphorylation levels of eIF2α and IRE1α, while CHOP was most highly expressed in P. intermedia . Pro-inflammatory cytokine expression showed P. intermedia and P. gingivalis elicited the most TNF-α, while P. gingivalis induced the highest IL-1β levels. These findings suggest oral bacteria induce varying levels of ER stress, influencing the progression of oral infectious diseases. Targeting ER stress could offer therapeutic potential for managing inflammatory conditions like periodontitis.
This study evaluated the immunogenicity of the Bacillus Calmette-Guérin (BCG) vaccine in a guinea pig model to refine preclinical assessment methods. 24 guinea pigs were divided into four groups for immunohistochemical, histopathological, and molecular analyses, including qRT-PCR and ELISA. The ELISA results revealed significant elevations in interleukin 2 (IL-2), interferon-gamma (IFN- ), and tuberculosis-specific antibodies in vaccinated guinea pigs, particularly γ notable after 6 weeks. Although lung cytokine levels remained unchanged, spleen gene expression showed significant differences in interleukin-17, interleukin-12, interleukin-1β, and C-X-C motif chemokine ligand 10 after 6 weeks. Immunohistochemistry revealed peak IL-2 expression at 8 weeks and significant IFN-γ and TNF-α expression at 6 weeks. This study confirmed the effectiveness of BCG vaccine in guinea pigs, providing crucial insights for future tuberculosis vaccine development and standardizing immune response indicators.
This study investigated the effects of drying methods and drying time on the changes in anthocyanin content in colored barley. Colored barley cultivar Boanchalbori was harvested at a time when the anthocyanin content was the most and dried in afield. The harvested barley was then treated by two methods, sun drying and shade drying, for 4, 8, 24, and 32 h. The moisture content of the sun-dried barley decreased slightly faster than shade-dried samples, but the difference was not statistically significant. Chemical analysis indicated that the samples dried under shaded conditions had slightly higher crude fiber and lower nitrogen free extract, but the difference was not statistically significant. There was no difference in the total digestible nutrients between the two methods. In the case of sun-dried barley, the anthocyanin content decreased compared to the control and shade-dried samples after drying for 4 h (p < 0.05), was maintained at a constant level at 24 h, and then decreased at 32 h. In case of shade-dried barley, the anthocyanin content decreased gradually with the drying time, and a significant decrease was found at 24 h of drying (p<0.05) as compared to the control. The shade-dried method was more successful in reducing anthocyanin loss than the sun-dried method (p<0.05). There was a slight decrease in 1,1-Diphenyl-2-Picrylhydrazyl radical scavenging with drying time in the shade-dried method, and a significant decrease after 4 h with the sun-dried method. These results showed that covering with a two-layer awning was advantageous to dry colored barley in the field conditions.