Mature embryos were aseptically excised with a scalpel and sliced in fragments measuring 0.5 mm in diameter (sliced mature embryo fragment; 4 ~~ 5 fragments/one embryo). Sliced mature embryo fragments of six wheat cultivars were cultured to develop an efficient method of callus induction and plant regeneration. Callus derived from sliced mature embryo fragments showed a good capacity to embryogenesis and regeneration. Furthermore sliced mature embryo fragments decreased contamination from fungi and bacteria. The high efficiency of callus induction were obtained Keumkangmil and Bobwhite. For plant regeneration, selected embryogenic calli were transferred to two types regeneration media. An average number of green spots per callus was 4 to 5 in regeneration media after about one week. Percentage of plant regeneration showed high in regeneration medium containing 0.1 mg/l 2,4-D and 5 mg/l zeatin. Especially, Keumkangmil (27.5~% ) and Bobwhite (33.3~% ) showed high regeneration efficiency. This regeneration system from sliced mature embryo fragments may provide an effective and convenient explant for plant transformation studies
Thirty-two germplasms of Korean adlay landraces were examined to analyse the genetic relationship through the amplified fragment length polymorphism (AFLP) approach. Total number of AFLP products generated by 12 selective primer combinations was 882. The number of polymorphic fragments by each primer combination greatly varied from 4 to 51 with a mean of 20.3, bands visible on the polyacrylamide gel. A genetic similarity coefficient was used for cluster analysis following UPGMA (unweighted pair grouping method of averages) method. The resulting clusters were represented in the form of a dendrogram. The clustering was not tight in the dendrogram. There was generally no clear grouping of the adlay according to the geographic regions in which germplasms were collected. The present AFLP analysis imply that although Korean adlay displayed a larger amount of AFLP variation within germplasms, the variation was shown independently without reflecting a clinal variation. This study demonstrated that AFLP method can be used to examine the genetic relationships among different germplasms of adlay.
The effects of sonication and vacuum infiltration on transformation efficiency was investigated by using immature embryos of Korean wheat as explants. Two Agrobacterium tumefaciens strains, KYRT1 and EHA105, carrying pCAMBIA 1305.1 were used. Transformation efficiency was demonstrated by the detection of β-glucu-ronidase (GUS) activity. GUS expression showed clear difference among Korean wheat cultivars. Geurumil showed higher GUS expression efficiency 79.1~% compared with other cultivars. The effects of the duration of vacuum infiltration and sonication treatment showed a tendency high GUS expression efficiency by their combination. In comparison with other Agrobacterium strains, KYRT1 showed high efficiency in most Korean cultivars.
Mature embryo and leaf base segment of Korean oat were used as materials in an experiment to check plant regeneration efficiency. MS media supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D), kinetin, and picloram were used for callus induction from mature embryos and leaf base segments. Three mg/l of 2,4D and 3 mg/l of picloram in callus induction medium showed high frequency for plant regeneration from mature embryos. Leaf base segments were transferred to callus induction medium and incubated at 25~circC in 16/8 hr light/dark cycle for 3 weeks. Callus induction from leaf base segments of Malgwiri showed high efficiency in medium containing 3 mg/l of 2,4-D and 1 mg/l of kinetin (91.8~%) . In case of Samhangwiri, the combinations of phytohormones did not show significant difference. Regeneration from leaf base segments showed high frequency in shoot medium containing 1 mg/l of antiauxin, tri-iodobenzoic acid (TIBA) and 1 mg/l of 6-benzyladenine (BA). Calli induced from leaf base segments of Samhangwiri and Malgwiri in media containing 3 mg/l of 2,4-D and 3 mg/l of picloram showed high regeneration frequency. It appears that the callus initiation medium may be an important factor for subsequent plant regeneration.
Immature and mature embryos of 18 Korean wheat genotypes were cultured in vitro to develop an efficient method of callus formation and plant regeneration, and to compare the responses of both embryo cultures. Immature and mature embryos were placed on a solid agar medium containing the MS salts and vitamins, 30g/l maltose, 2 mg/l 2,4-dichlorophenoxyacetic acid (2,4-D), and amino acids. The developed calli were maintained on regeneration medium containing MS salts and B5 vitamins, 20 g/l sucrose, and the combination of two plant growth regulators, 6-benzylaminopurine (BAP) and indole-3-acetic acid (IAA). Immature embryos in most genotypes showed high efficiency of callus induction except three genotypes; Eunpamil, Chunggemil, and Namhaemil, and significant differences among the genotypes. Plant regeneration of calli induced from immature embryos showed high efficiency in Geurumil (56.5%), Tapdongmil (50.5%), Gobunmil (45.5%), and Urimil(42.2%). The analysis of variance showed significant differences for regeneration frequency among the genotypes. Mature embryos showed low callus induction frequency compared with that in immature embryos, and significant differences among the genotypes. Plant regeneration of calli induced from mature embryos showed high efficiency in Keumkangmil (33.33%), Tapdongmil(28.13%), and Geurumil (27.78%). The analysis of variance showed significant differences for plant regeneration frequency among the genotypes.