검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 616

        1.
        2024.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Metal-free N–S- and N–P-doped nanocarbon (SCNP and PCNP) electrocatalysts prepared through sustainable microwaveassisted synthesis using hemigraphis alternata plant leaves. The prepared heteroatom-doped nanocarbon materials are active catalysts for the two-electron oxygen reduction reaction (ORR) to produce 65–70% of hydrogen peroxide. As evidenced from the XPS, most proportion of the doped heteroatoms contain the oxygen functional groups in the nanocarbons. These attributes are the critical factors to see the selective two-electron transfer ORR for the PCNP and SCNP. This approach shed light on the critical role of dual heteroatoms doping and the oxygen functionalities in nanocarbon towards the selectivity of ORR. We believe that this method would allow the preparation of heteroatom that contains oxygen functionalities. Our work paves a sustainable way of preparation of nanocarbon based ORR catalysts that are only selective for two-electron transfer process.
        4,000원
        2.
        2023.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The rapid synthesis techniques and interesting multidisciplinary applications make carbon nanodots (CNDs) stand out from semiconductor quantum dots. Moreover, CNDs derived from green precursors have gained more importance beyond chemically derived CNDs due to sustainable synthesis opportunities. However, the presence of molecular impurities or intermediates or fluorophores was neglected during the entire process. Herein, we illustrate the sustainable synthesis of CNDs from Hemigraphis alternata plant leaves with extended carbonization procedure (3 and 9 min) along with simultaneous ethylene glycol and diethyl ether solvent treatment method for the successful removal of interfering fluorophores. To unravel the distinction between purified CNDs (P-CNDs) and organic fluorescent carbon nanostructures (org-FCNs), we carried out photophysical, structural, and morphological studies. A quantum yield (QY) of 69 and 42% was observed for crude org-FCNs, and crude P-CNDs; however after purification, QY of 1% and absence of one component from the fluorescent decays curve suggest the removal of fluorophores. Further, HR-TEM and DLS studies showed the quasi-spherical amorphous particles having < 10 nm particle size for P-CNDs. Besides, in vitro biocompatibility investigation and cellular uptake assay (1–100 μg/mL) against the MDA-MB 468 cell lines proves the ≥ 95% cell viability and good internalization for both org-FCNs and P-CNDs. Hence, our study shows the presence of fluorophore impurities in plant-derived CNDs, the removal and resemblance in biocompatibility properties. Hence, this information can be considered during the synthesis and isolation of CNDs. Simple and effective removal of impurities to harvest pure carbon nanodots (CNDs) through solvent-based selective separation method, and revelation of the cocktail flourphores similar to biocompatible blue fluorescent CNDs were studied.
        4,900원
        3.
        2021.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Even in an era where 8-meter class telescopes are common, small telescopes are considered very valuable research facilities since they are available for rapid follow-up or long term monitoring observations. To maximize the usefulness of small telescopes in Korea, we established the SomangNet, a network of 0.4{1.0 m class optical telescopes operated by Korean institutions, in 2020. Here, we give an overview of the project, describing the current participating telescopes, its scienti c scope and operation mode, and the prospects for future activities. SomangNet currently includes 10 telescopes that are located in Australia, USA, and Chile as well as in Korea. The operation of many of these telescopes currently relies on operators, and we plan to upgrade them for remote or robotic operation. The latest SomangNet science projects include monitoring and follow-up observational studies of galaxies, supernovae, active galactic nuclei, symbiotic stars, solar system objects, neutrino/gravitational-wave sources, and exoplanets.
        4,600원
        8.
        2019.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Comparisons between bare carbon (CPs) and nitrogen-doped carbon nanoparticles (N-CPs) synthesised using hydrothermal reaction are carried out. It was found that hydrothermal reaction of citric acid yields graphene-like sheets, while the nitrogen doping using ethylenediamine resulted in amorphous polymeric ball-like hydrocarbons devoid of any aromatic rings. Although the Fourier transform infrared spectroscopy, Raman spectroscopy and nuclear magnetic resonance spectroscopy indicate the presence of carbon–carbon double bonds (C=C), and the ground states of both materials are very deep (> 7.8 eV) as measured by ultraviolet photoelectron spectroscopy. This indicates the conjugation is very short. This is supported by the fact that both materials are UV blue emitting peaking at 375 nm probably originating from C=C.
        4,000원
        14.
        2018.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We present the analysis of KMT-2016-BLG-0212, a low flux-variation (Iflux−var ∼ 20 mag) microlensing event, which is in a high-cadence (Γ = 4hr −1) field of the three-telescope Korea Microlensing Telescope Network (KMTNet) survey. The event shows a short anomaly that is incompletely covered due to the brief visibility intervals that characterize the early microlensing season when the anomaly occurred. We show that the data are consistent with two classes of solutions, characterized respectively by low-mass brown-dwarf (q = 0.037) and sub-Neptune (q < 10−4) companions. Future high-resolution imaging should easily distinguish between these solutions.
        4,000원
        15.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, an empirical relationship between the energy band gap of multi-walled carbon nanotubes (MWCNTs) and synthesis parameters in a chemical vapor deposition (CVD) reactor using factorial design of experiment was established. A bimetallic (Fe-Ni) catalyst supported on CaCO3 was synthesized via wet impregnation technique and used for MWCNT growth. The effects of synthesis parameters such as temperature, time, acetylene flow rate, and argon carrier gas flow rate on the MWCNTs energy gap, yield, and aspect ratio were investigated. The as-prepared supported bimetallic catalyst and the MWCNTs were characterized for their morphologies, microstructures, elemental composition, thermal profiles and surface areas by high-resolution scanning electron microscope, high resolution transmission electron microscope, energy dispersive X-ray spectroscopy, thermal gravimetry analysis and Brunauer-Emmett-Teller. A regression model was developed to establish the relationship between band gap energy, MWCNTs yield and aspect ratio. The results revealed that the optimum conditions to obtain high yield and quality MWCNTs of 159.9% were: temperature (700ºC), time (55 min), argon flow rate (230.37 mL min–1) and acetylene flow rate (150 mL min–1) respectively. The developed regression models demonstrated that the estimated values for the three response variables; energy gap, yield and aspect ratio, were 0.246 eV, 557.64 and 0.82. The regression models showed that the energy band gap, yield, and aspect ratio of the MWCNTs were largely influenced by the synthesis parameters and can be controlled in a CVD reactor.
        4,000원
        16.
        2018.11 구독 인증기관·개인회원 무료
        To preserve the superior genetic resources and restore the endangered species, Somatic cell nuclear transfer (SCNT) has been used widely. In Korea, the research of dog cloning has made outstanding achievements including the production of the world`s first cloned dog. Sapsaree (Sapsalgae), the representative dog of Gyeongsan-si was designated as a Korea natural monument (No. 368). This male dog used in this study has azoospermia due to unknown cause. In this study, the aim was to confirm the cause of infertility in the cell donor dog and to evaluate the reproduction potential of dog cloning using infertile male dog by SCNT. First, to confirm the infertility of the cell donor dog, the reproductive history and the testis were evaluated. The breeding histology was not recorded in individual document. In histopathology, the Sertoli cell tumor was confirmed in biopsy of the cell donor dog after death. But, these tumors are predominantly in older dogs. Second, we produced the cloned dogs with the somatic cells of the infertile dog and the appearance was similar with the cell donor dog. Also, microsatellite analysis confirmed the genetic relationship between the cell donor and clone dogs. Third, the potential breeding capacity of the cloned dog was confirmed. In T4 assay, the normal dog (same age with cloned dogs), cell donor dog, and cloned dogs was investigated. The cell donor dog with azoospermia had very low T4 level, and cloned dogs showed higher level of T4 than normal dogs. In CASA, There was no significant difference in sperm motor ability between normal dogs and cloned dogs. As a result, cloned dogs produced by SCNT had no problem regarding the reproductive function of the testis. In AI experiment, the semen of clone dogs was used to fertilize a natural female bitch and was diagnosed pregnancy by ultrasonography. In total, 7 puppies were born by normal delivery (male: 3, female: 4). In conclusion, this study confirmed that the reproduction problem of non-genetic infertility can generate a normal descendant by SCNT. Also, the first successful research to restore infertile dogs was completed. Furthermore, SCNT would be useful for the restoration of endangered species and application of superior traits.
        19.
        2018.07 구독 인증기관·개인회원 무료
        In nowadays consumption-based society, products (e.g. food and electronic products) are often thrown away before they are sufficiently used. The aversive consequence of such a lifestyle is becoming more alarming. There is an urgent need for a change in people’s consumption style. How can we make people correct their existing wasteful consumption behaviors and act responsibly? In fact, feelings very often can influence people’s behavior and judgments (Schwarz, 1990), even though the feelings are aroused by irrelevant sources - incidental emotion (Garg, Inman, & Mittal, 2005; Lerner & Keltner, 2000; Schwarz & Clore, 1983). Feelings of guilt and shame are known as moral emotions which are the guidance to ethical behaviors (Tangney, 1991, 2003). Although there is a significant overlapping between these two emotions, they also differ in several important aspects. One critical difference lies in the way the transgressor makes attributions (Niedenthal, Tangney, & Gavanski 1994). A transgressor who attributes the wrongdoing to a specific behavior (i.e. “I’ve done something bad”) is more likely to experience guilt while a transgressor who makes attribution to the global self (i.e. “I’m a terrible person”) is more likely to experience shame (Tracy & Robins, 2004). Given these fundamental differences, we speculate that a guilt-laden consumer is more likely to correct his or her wrongdoing (i.e. wastage) by taking reparative actions to minimize waste but a shame-laden consumer may possibly give up doing so. Findings from an experimental study (N=90) largely support this prediction. Undergraduate students who were made to feel shame were less likely to participate in a recycling campaign organized by the university than the students in the control condition. They reported a lower intention to use recycling facilities provided. On the other hand, participants who were made to feel guilt reported a marginally higher intention to participate in the campaign than the control participants. These preliminary findings suggest that emotional experience derived from other life domains might determine responsible consumption behaviors. Shame, which is commonly regarded as a moral emotion, may not necessarily make people more responsible consumers. The mechanism that underlies this effect may warrant further investigation.
        1 2 3 4 5