지방산 혼합물 단분자층 LB막의 전기화학적 특성을 통하여 그 안정성을 순환전압전류법으로 조사하였다. 지방산혼합물 LB막은 ITO glass에 LB법을 사용하여 제막하였다. 전기화학적 특성은 0.01N KClO4 용액에서 3 전극 시스템으로 순환전압전류법에 의해 측정하였다. 측정범위는 연속적으로 1650 mV로 산화시키고, 초기 전위인 -1350 mV로 환원시켰다. 주사속도는 각각 50, 100, 150, 200 및 250 mV/s로 설정하였다. 그 결과 지방산혼합물 LB막은 순환전압전류곡선으로부터 산화전류로 인한 비가역 공정으로 나타났다. 지방산혼합물 LB막은 전해질농도가 0.01 N NaClO4 용액에서 확산계수(D)는 각각 7.9×10-2 cm2s-1을 얻었다.
스테아르산과 인지질혼합물의 농도변화에 띠르는 유기초박막에 대한 안정성을 조사하였다. 스 테아르산과 인지질 혼합물 유기초박막은 ITO glass에 LB법을 사용하여 제막하였다. 전기화학적 특성은 NaClO4 용액에서 3 전극 시스템으로 순환전압전류법을 사용하여 초기 1650 mV에서 최종 퍼텐셜 -1350 mV 까지 측정하였다. 그 결과 스테아르산과 인지질의 혼합물 유기초막은 순환전압전류도표로부 터 산화전류로 인한 비가역공정으로 나타났다. 스테아르산과 인지질혼합물 LB막(몰비 1:1, 1:2, 1:3)에 서 확산계수(D)는 0.01 N NaClO4에서 각각 1.4x10-3, 1.7x10-3 및 1.6x10-3 (cm2/s)로 산출되었다.
변위전류 측정법을 L-α-dilauryl phosphatidylcholine(DLPC) 단분자 막의 연구에 적용하였 다. 변위전류는 물 표면에서 DLPC 단분자 층에서 압축과 확장에 의해 발생되었다. 맥스웰 변위전류 (MDC) 발생은 분자 당 점유면적 200 Å2 에서 40 Å2에 대하여 관찰하였다. 맥스웰 변위전류는 단분 자 층의 압축 사이클에 대해 조사하였으며, MDC의 최대 값은 압축 사이클의 표면 압력이 처음 상승하 기 바로 직전의 분자당 점유면적에서 나타나는 것을 알 수 있었다. LB막의 단분자층 표면 형태는 원자 힘 현미경(AFM)으로 측정하였다. 결과적으로, AFM 이미지에 나타난 LB막의 특성은 단분자 층의 배향 이 좋았으며 단분자 층의 두께는 약 5~10 nm였다.
본 연구에서는 스테인리스강을 사용하여 전형적인 3-전극 시스템의 순환전류전압법으로 트리에탄올아민(TEA) 용액 중에서 전류-전압 곡선을 측정하였다. 스테인리스강은 작업 전극으로, Ag/AgCl 전극은 기준 전극으로, 그리고 백금 선은 상대 전극으로 각각 사용하였고, 그 결과, 트리에탄올아민 용액에서의 스테인리스강의 C-V 특성은 순환전류전압법으로부터 산화전류에 기인한 비가역 공정으로 나타났다. 부식억제제의 확산계수의 효과는 농도 증가에 따라 감소하였다. 그리고 부식억제 효과는 농도 0.5 N의 NaClO4, 2.5x10-3 M TEA용액에서 가장 컸으며, 1.5 N NaClO4, 1.0x10-3 M TEA용액에서 가장 낮았다.
일반적인 3-전극 시스템의 순환전압전류법을 사용하여 유기부식억제제인 트리에탄올아민 (TEA)을 첨가하여 SCM440 강에 대한 전류-전압 곡선을 측정하였다. 그 결과 SCM440 강의 C-V특성 은 순환전압전류법으로부터 산화전류에 기인한 비가역 공정으로 나타났다. 확산계수는 부식억제제 TEA 의 농도를 2.5 x 10-4 M에서 5,0 x 10-4 M로 2배로 증가시킴에 따라 확산계수는 각각 2.561 x 10-6 cm2s-1에서 1.707 x 10-6 cm2s-1로 1.5배로 감소하므로 부식억제효과가 좋음을 알 수 있었다. 그리고 전 해질 농도변화에 따르는 효과는 전해질 농도를 0.5 N에서 1.0 N로 증가시키면, 확산계수는 각각 5.12 x 10-6 cm2s-1에서 2.56 x 10-6 cm2s-1로 2배로 감소하므로 1.0 N의 전해질의 사용이 적합하였다.
포화지방산과 인지질(DMPC)혼합 LB막에 대한 전기화학적 특성을 조사하였다. 포화지방산과 DMPC 혼합 단분자 LB막은 ITO glass에 Langmuir-Blodgett법을 사용하여 제막하였다. 전기화학적 특 성은 NaClO4 용액에서 3 전극 시스템 (Ag/AgCl 기준전극, 백금선 카운터 전극 및 LB 필름이 코팅된 ITO 작업 전극)으로 순환전압전류법을 사용하여 측정하였다. 그 결과 포화지방산과 인지질(DMPC)의 LB막은 순환전압전류도표로부터 산화전류로 인한 비가역공정으로 나타났다. 포화지방산과 인지질 (DMPC)혼합(몰비 1:1) LB막(C14, C16, C18, C20)에서 확산계수(D)는 0.05 N NaClO4에서 각각 1.2x10-3, 2.1x10-3, 1.4x10-4 및 1.1x10-3 cm2/s로 산출되었다.
포화지방산(C12, C14, C16, C18) 단분자층 LB막의 전기화학적 특성을 통하여 그 안정성을 순환전압전류법으로 조사하였다. 포화지방산 단분자층 LB막은 ITO glass에 LB법을 사용하여 제막하였 다. 전기화학적 특성은 0.1 N NaClO4 용액에서 3 전극 시스템으로 순환전압전류법에 의해 측정하였다. 측정범위는 연속적으로 1650 mV로 산화시키고, 초기 전위인 -1350 mV로 환원시켰다. 주사속도는 각 각 50, 100, 150, 200 및 250 mV/s로 설정하였다. 그 결과 포화지방산 LB막은 순환전압전류곡선으로 부터 산화전류로 인한 비가역공정으로 나타났다. 포화지방산 LB막의 확산계수(D)를 산출한 결과 각각 라우르산, 2.223x10-3 cm2/s, 미리스트산, 2.461x10-4 cm2/s, 팔미트산, 7.114x10-4 cm2/s 및 스테아르 산, 2.371x10-4을 얻었다.
전형적인 3-전극 시스템의 순환전압전류법을 사용하여 알킬기를 가진 에탄올아민 용액 중에서 스테인리스에 대한 전류-전압 곡선을 측정하였다. 스테인리스는 작업 전극으로, Ag/AgCl 전극은 기준 전극으로, 그리고 백금선은 상대 전극으로 각각 사용하였다. N-에틸에탄올아민과 N,N-디메틸에탄올아민 용액에서의 스테인리스의 C-V특성은 순환전압전류법으로부터 산화전류에 기인한 비가역 공정으로 나타났다. 부식억제제의 확산계수의 효과는 각각 농도 증가에 따라 감소하였다. 금속의 SEM 이미지로부터 0.5 N의 전해질에서 부식억제제인 N,N-디에틸에탄올아민 (1.0 × 10-³ M)을 첨가한 경우, 구리와 니켈에서 부식억제 효과가 향상되었다.
인지질(L-α-phosphatidylethanolamine, LAPE) 단분자층 LB막의 전기화학적 특성을 통하여 그 안정성을 순환전압전류법으로 조사하였다. LAPE 단분자층 LB막은 ITO glass에 LB법을 사용하여 제막하였다. 전기화학적특성은 0.5 N, 1.0 N, 1.5 N 및 2.0 N KClO₄ 용액에서 3 전극 시스템으로 순환전압전류법에 의해 측정하였다. 측정범위는 연속적으로 1650 mV로 산화시키고, 초기 전위인 -1350 mV로 환원시켰다. 주사속도는 각각 50, 100, 150, 200 및 250 mV/s로 설정하였다. 그 결과 LAPE LB 막은 순환전압전류곡선으로부터 산화전류로 인한 비가역공정으로 나타났다. LAPE LB막은 전해질농도가 0.01 N, 0.05 N. 0.10 N, 0.15 N 과 0.20 N KClO4 용액에서 확산계수(D)는 각각 195, 15.9, 5.75, 1.38 및 0.754 cm²s-¹×10-9을 얻었다.
순환전압전류법에 의한 인지질(sphingomyelin, SP)과 polyamic acid(PAA) 혼합물의 농도(몰비 1:1, 2:1 및 3:1)를 변화시켜 혼합단분자 LB막에 대한 전기화학적 특성을 조사하였다. SP과 PAA 혼합물의 단분자 LB막은 ITO glass에 LB법을 사용하여 제막하였다. 전기화학적 특성은 KClO₄ 용액에서 3 전극 시스템으로 측정하였다. 측정 범위는 연속적으로 1650 mV로 산화시키고, 초기 전위인 -1350 mV로 환원시켰다. 주사속도는 각각 50∼250 mV/s로 설정하였다. 그 결과 SP와 PAA 혼합물의 LB막은 순환전압전류도표로부터 환원전류로 인한 비가역공정으로 나타났다. 혼합물 LB막의 혼합(SP:PAA) 몰비가 1:1, 2:1 및 3:1에서 확산계수(D)는 각각 2.670×10-5, 3.562×10-5 및 1.005×10-5 cm²s-¹을 얻었다.
The crystallization of polypropylene (PP) particles in PP/decalin solution was conducted using the thermally induced phase separation(TIPS). During the control of particles sizes followed by the cooling of PP/decalin solution, particles were formed controllably, the concentrated PP resulted in an increase in the average diameter of PP particles. The effects of surfactants changes on particles sizes were investigated by using a field emission scanning electron microscope (FE-SEM). The PP crystals showed spherical shapes with a diameter 5∼18 μm. Additionally, as an effect of concentration of PP, the size distribution of the PP particles became broad with higher concentration of PP in the solution.
Esterification reaction between succinic acid[SA] and 1,4-butanediol [BD] was kinetically investigated in the presence of organometallic catalysts (ESCAT-100Ag18, MBTO) at 150~180℃. The reaction followed from the measurement of the quantity of water which was distilled from the reaction vessel. The esterification reaction was carried out under the first order kinetics with respect to the concentration of reactants and catalyst, respectively. The overall reaction order was 2nd. From the examination of relationship between apparent reaction rate constants and reciprocal absolute temperature, the activation energy has been calculated as 146.70 kJ/mol(ESCAT-100Ag18) and 87.57 kJ/mol(MBTO), respectively.
Techniques measuring Maxwell displacement current (MDC) and LB films surface measuring technique have been applied to the study of monolayers of polyamic acid containing azobenzene. MDCs was generated from monolayers on the water surface by monolayer compression and expansion. It was generated when the area per molecule was about 103a2 and 78a2 just before the initial rise of the surface pressure during the 1st and 2nd mixed monolayer compressions cycle, respectively. It was the maximum of MDCs appeared at the molecular area just before the initial rise of surface pressure in compression cycles, and we have found that the increase of aggregations causes the noticeable increase of the surface roughness.
Thermal decomposition of the copolymer of butyl methacylate(BMA) with styrene(St) was investigated. The copolymer Was obtained at 80 ℃ in a continuous stirred tank reactor(CSTR) using toluene and benzoyl peroxide(BPO), as solvent and initiator, respectively. The reactor volume was 0.3 liters and residence time was 3 hours. The thermal decomposition followed the second order kinetics for BMA/St copolymer. The activation energies of thermal decompositon were in the ranges of 38 ~43 kcal/mol for BMA with St copolymer and a good additivity rule was observed with the composition of copolymer. The thermogravimetric trace curve agreed well with the theoretical calculation.
The organization of phospholipid monolayers and their monolayers mixed with fatty acid containing azobenzene on the water surface was investigated by means of the displacement current measurement method. The phase transition from the gaseous phase to the gaseous-fluid phase which accompanies the polar ordering of phospholipid molecules was detected in the range of immeasurably low surface pressure. The molecular area which gives the onset of the transition was determined for phospholipid monolayers. The Maxwell displacement current(MDC) pulses were generated across mixed monolayers due to the photoisomerization of fatty acid containing azobenzene by alternating irradiation of ultraviolet and visible light, because the condensation of pure azobenzene monolayers was loosened by the introduction of phospholipids into the monolayers. The displacement currents generated during light irradiation were also investgated in connection with monolayer compression cycles. It was found that the maximum of MDC appeared at the molecular area just before the initial rise of surface pressure in compression cycles.