검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 6

        2.
        2014.04 구독 인증기관·개인회원 무료
        Polyhedrin is the major component of the nuclear viral occlusions produced during replication of the baculovirus Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV). To enhance the production efficiency of foreign protein in baculovirus expression system, the effects of various polyhedrin fragments were investigated by fusion expressing them with the enhanced green fluorescent protein (EGFP). Recombinant viruses were generated to express EGFP fused with polyhedrin fragments based on the previously reported minimal region for self-assembly and the KRKK nuclear localization signal (NLS). The marked increase of EGFP by these fusion expressions was confirmed through protein and fluorescence intensity analyses. Among the fusion-expressed protein in nucleus and cytoplasm, the most hyper-expression was observed in the fusion of amino acids 19 to 110 and 32 to 59 of polyhedrin. Also these fragments, some degradation of only the fused polyhedrin was observed in the fusion of amino acids 19 to 85 and 32 to 85. The production of E2 protein, which is a major antigen of classical swine fever virus, was dramatically increased by fusion expression with polyhedrin amino acids 19 to 110, and its preliminary immunogenicity was verified using experimental guinea pigs. The production of luciferase was approximately two folds increased by fusion expression with polyhedrin amino acids 32 to 59, and its activity was measured using Luminometer. This study suggests a new option for higher expression of useful foreign recombinant protein using the partial polyhedrin fusion expression in baculovirus.
        3.
        2013.04 구독 인증기관·개인회원 무료
        To enhance the production efficiency of foreign protein in baculovirus expression system, the effects of polyhedrin fragments were investigated by fusion expression them with the enhanced green fluorescence protein (EGFP). Recombinant viruses were generated to express EGFP fused with polyhedrin fragments based on the minimal region for self-assembly and the KRKK nuclear localization signal (NLS). The increase of EGFP production by fusion expressions was confirmed through protein and fluorescence intensity analyses. The importance of nuclear localization for enhanced production of EGFP was shown by the mutation of the NLS within the fused polyhedrin fragment. Among the fusion expressed protein in cytoplasm, the most hyper-expression was observed in the fusion of amino acids 32 to 59 of polyhedrin. Polyhedrin fragment fusion expression with classical swine fever virus E2 protein also resulted hyper-enhanced expression of E2 protein. However, the fusion expression of porcine circovirus ORF2 with polyhedrin fragment did not show significant enhance of ORF2 production. These results suggested that the enhancement of foreign protein production when fused with polyhedrin is caused by the enhanced stability of expressed protein.
        4.
        2011.05 구독 인증기관·개인회원 무료
        Polyhedrin is the major component of the nuclear viral occlusions produced during replication of the baculovirus Autographa californica multicapsid nuclear polyhedrosis virus (AcMNPV). To enhance the expression level of baculovirus vector system, we constructed several fusion vectors using various fragments of the polyhedrin. The polyhedrin fragments were genetically fused to the enhanced green fluorescent protein (eGFP) under the control of polyhedrin promoter, and their expressions were analyzed in Sf21 insect cells. Expression of the fusion protein was identified by SDS-PAGE and Western blot analysis using anti-GFP and anti-Polyhedrin. The expression level of eGFP was markedly increased by the fusion of partial polyhedrin. Also, the fluorescence intensity of fusion proteins was higher than that of non-fusion protein. Confocal laser scanning microscopy demonstrated that fusion proteins were localized to the cytosol or nucleus of insect cells. In additional, the glycoprotein E2 (gE2) of classical swine fever virus (CSFV) expressed by the these vectors was dramatically increased and its immunogenicity was proofed using experimental animal guinea pigs that were immunized with the partial polyhedrin containing gE2. This study provides a new option for the higher expression of useful foreign recombinant protein by using the partial polyhedrin in BEVS.
        5.
        2009.10 구독 인증기관·개인회원 무료
        The Classical Swine Fever Virus (CSFV) is a member of the Pestivirus genus of the Flaviviridae. The genome of CSFV is a positive single-stranded RNA molecule 12.3 kb and contains a single large open reading frame (ORF). The polyprotein composed of eight nonstructural and four structural proteins (nucleocapsid protein C and three envelope glycoprotein E0, E1 and E2). E2, the most immunogenic of the CSFV glycoproteins, induces a protective immune response in swine. To determine the characteristics of the CSFV, LOM strain, we investigated the nucleotide sequence of the glycoprotein E0, E1 and E2. Comparison of the LOM with the other strains revealed nucleotide sequence identity ranging from 97 to 98%. Expression of the glycoprotein E2 was identified by SDS-PAGE and Western blot analysis using anti-CSFV E2 monoclonal antibodies in Sf21 cells. The expression levels of glycoprotein E2 were observed from day 3 and 5 days maximum. In addition, its expression efficiency by media and cell line was investigated. The result showed that High-Five cells and Grace’s insect media for Sf21 were the best conditions for the expression of the glycoprotein E2.