This study was conducted to investigate the efficacy of vitrification procedure for the cryopreservation of porcine oocytes and the utilization of vitrified oocytes as recipient cytoplasts for somatic cell nuclear transfer (NT), and observed that porcine oocytes are evaluated by pronuclear formation, and parthenogenetic development. Single fetal donor cells were deposited into the perivitelline space of vitrified enucleation oocytes, followed by electrical fusion and activation. NT embryos were cultured in NCSU-23 medium supplemented with 5% FBS, at in 5% and air. 1. When the developmental rates of the oocytes after being culture for hours vitrified with EDS and ETS were 42.0%, 38.0%, respectively. This results were lower than the control group(62.2%). 2. When the developmental rates of the oocytes after being culture for hours vitrified-thawed with sucrose and glucose, 5% PVP, NCSU-23 supplemented with 10% FBS were 33.3%, 25.9%, respectively. This results were lower than the control group(55.6%). 3. The fusion and development to the blastocyst stage between the NT embryos constructed with the vitrified and non-vitrified oocytes were significant differences. Developmental rate of oocytes and NT embryos constructed with the vitrified or non-vitrified oocytes were , respectively.
Although nuclear transfer (NT) techniques are used to clone animals, its efficiency is very low. Moreover, nuclear transfer has resulted in offspring with severe developmental problems, probably due to incomplete nuclear reprogramming. Nuclear reprogramming is characterized by functional modification of the transferred nucleus to allow it to direct normal embryo development with the potential to grow to term. Although the nature of the reprogramming factor(s) in mammals is not clear, various nuclear as well as cytoplasmic components are involved in the processes. In this article we review recent data on factors involved in the nuclear reprogramming of cloned embryos.
Transgenic mice containing GH Receptor (GHR) gene fused to metallothionein promoter were analyzed to evaluate effect of GHR expression on growth in vivo. Three founder mice lines contained copies of GHR transgene and transmitted these genes into F₁ and F₂ progenies. The mRNA expression of transgene was identified using RT-PCR with GHR genes in tissues. To analyze the effects of transgenes on growth performance, body weights of pups were measured at 4, 10 and 14 weeks after birth. The body weight of transgenic mice was higher compared with that of non-transgenic control mice regardless of sex (P<0.05). Body weights between transgenic and non-transgenic mice were increased with aging. Overall, GHR transgenic mice tended to grow about 10 to 15 % faster than non-transgenic mice without any pathological defects.
This study was carried out to find out the changes on serum concentrations of estradiol-17β, progesterone in primiparous Duroc, Landrace and Yorkshire sows weaned at 7 or 21 days. Also, we compared the litter size at birth and weaning among the breeds weaned after lactation for 7 or 21 days. The estradiol-17β concentrations among the breeds were 6.9∼8.8 pg/ml and 6.4∼8.8 pg/ml after lactation for 7 or 21 days, respectively. The progesterone concentrations ranged from 0.3 ng/ml to 1.6 ng/ml. Duroc sow showed higher progesterone concentration compared with Landrace and Yorkshire sows weaned after lactation for 7 or 21 days. Also, we found out that litter size at birth and weaning, respectively, did not show any differences between day 7 and day 21 of lactation. From the facts mentioned above, it was suggested that very early weaning systems could work with no apparent adverse effect on prolificacy.
Transgenic animals production tools have been valuable for research and purpose. The current methods of gene transfer, microinjection and nuclear transfer, which are widely used in transgenic animal production, but all most methods has only had limited success in production of larger species. Here, we report the possibility of a sperm-mediated gene transfer method in porcine embryos. Oocytes were collected from ovaries harvested at a local slaughterhouse were matured in 500 drops of TCM-199 under mineral oil at 38.5 in a humidified atmosphere of 5%CO2 in air. After 42-43h of in vitro maturation oocytes were denuded. for sperm injection into the cytoplasm of the porcine oocytes, sperm suspension in NIM medium are subjected extraction with TritonX-100 before mixing with a green fluorescent gene (GFP). Sperm with Tritonx-100 were prepared by adding TritonX-100 to a final volume of 0.05% in the sperm suspension and mixing by trituration for 60s before two wishes in NIM medium at 2. A(ter wishing, sperm were mixed with TritonX-100 at followed by washes at 2. Sperm were resuspended in ice cold NIM to a final volume of 400 and 2-20ng/ DNA were triturated on ice for 60s. All microinjection was performed in HEPES-buffered CZB medium at room temperature within 2h. After culture in NCSU-23 for 72h, percent of porcine embryos transfected GFP gene are 20.7%(6/29) in 20ng/ sperm-DNA mixed group and other groups were 3.7 %(2/54)and 4.7%(3/67). These data suggests that sperm-mediated gene transfer method should be used to the production tool of transgenic pig efficiently.