Cardiovascular system is the primary organ to develop and reach a functional state, which underscores the essential role of the vasculature in the developing embryo. The vasculature is a highly specialized organ that functions in a number of key physiological works including the carrying of oxygen and nutrients to tissues. It is closely involved in the formation of heart, and hence it is essential for survival during the hatching period. The expression of genes involved during vascular development in the olive flounder (Paralichthys olivaceus) in the days after hatching is not fully understood. Therefore, we examined the expression patterns of genes activated during the development of flounder. Microscopic observations showed that formation of blood vessels is related to the expression of the vimentin gene. Also, the temporal expression patterns of this vimentin-like gene in the developmental stages and in the normal tissues of olive flounder. The purpose of this study was to examine the expression patterns of vimentin in normal tissues of the olive flounder and during the development of the vascular system in newly hatched olive flounders and HIF-1 plays a vital role in the formation of blood vessels during development. Vimentin expression was strong at the beginning of the development of blood vessels, and was present throughout all developmental stages. Our findings have important implications with respect to the roles of vimentin and HIF-1 in the development and evolution of the first blood vessels in olive flounder. Further studies are required to elucidate the vimentin-mediated hypoxic response signal transduction and to decipher the functional role of vimentin in developmental stages.
Fish larvae are immediately exposed to microbes from hatching to maturation of their lymphoid organs, therefore effective innate mechanisms is very important for survival. However, the knowledge of the development of immune system in fish is limited and in demand now. In vertebrates, recombination-activating gene 1 (RAG-1) and immunoglobulin M (IgM) have been considered as very useful markers of the physiological maturity of the immune system. In this study, the expression of the both genes was assessed throughout the early developmental stages of olive flounder larvae (5-55 dph) and used as markers to follow the development of immune system. RAG-1 and IgM mRNA expression was detectable at 5 dph and remained so until 55 dph. These patterns of expression may suggest that the olive flounder start to develop its function around 5 dph. Tissue distribution was found that both genes mRNAs are only expressed in the immune-related organ such as spleen, kidney and gill. The early detection of IgM mRNA led to the investigation of its presence in oocytes. Both RAG-1 and IgM mRNA transcripts were detected in unfertilized oocytes, suggesting that they are maternally transferred. The biological significance of such a phenomenon remains to be investigated.
고력볼트의 현장 조립시 볼트 구멍 간의 불일치로 인하여 볼트 구멍을 확장하는 경우가 빈번하게 발생하고 있으며, 이를 위해서 외국 기준에서는 볼트 구멍 크기, 형태, 하중 방향에 따라 미끄럼하중에 대한 규정을 따로 두고 있다. 그러나 우리나라의 경우 과대구멍에 대한 시방규정이나 이에 대한 접합부 특성에 관한 연구는 미흡한 실정이다. 따라서, 접합부재 표면처리와 볼트구멍 크기의 변화가 접합부 내력에 어떠한 영향을 미치는 지를 실험을 통해 정량적으로 평가할 필요가 있다. 본 연구에서는 볼트 구멍 크기 및 형태에 따른 접합부의 미끄럼하중의 변화와 체결 후, 장기축력이완의 경향을 분석하기 위하여 160시간 및 800시간 동안 고력볼트의 축력의 변화를 측정하였다. 본 실험대상 고력볼트로 KS B 2819에 규정된 TS(Torque Shear)형 고력볼트를 사용하였다. 표준 볼트구멍 대비 그 외 볼트구멍의 미끄럼하중의 변화는 10% 미만으로 나타났으며, 장기축력이완은 직경 2.5배의 슬롯구멍에서, 2.66%로 가장 높게 나타났다.