검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2012.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The preparation of Sm2O3 doped CeO2 in Igepal CO-520/cyclohexane reverse micelle solutions has been studied. In the present work, we synthesized nanosized Sm2O3 doped CeO2 powders by reverse micelle process using aqueous ammonia as the precipitant; hydroxide precursor was obtained from nitrate solutions dispersed in the nanosized aqueous domains of a micro emulsion consisting of cyclohexane as the oil phase, and poly (xoyethylene) nonylphenylether (Igepal CO-520) as the non-ionic surfactant. The synthesized and calcined powders were characterized by Thermogravimetry-differential thermal analysis (TGA-DTA), X-ray diffraction analysis (XRD), and Transmission electron microscopy (TEM). The crystallite size was found to increase with increase in water to surfactant (R) molar ratio. Average particle size and distribution of the synthesized Sm2O3 doped CeO2 were below 10 nm and narrow, respectively. TG-DTA analysis shows that phase of Sm2O3 doped CeO2 nanoparticles changed from monoclinic to tetragonal at approximately 560˚C. The phase of the synthesized Sm2O3 doped CeO2 with heating to 600˚C for 30 min was tetragonal CeO2. This study revealed that the particle formation process in reverse micelles is based on a two step model. The rapid first step is the complete reduction of the metal to the zero valence state. The second step is growth, via reagent exchanges between micelles through the inter-micellar exchange.
        3,000원
        2.
        2008.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A preparation of NixMn1-xFe2O4 nanoparticles produced via the reduction of Nickel nitrate hexahydrate, Manganese (II) nitrate hexahydrate and Iron nitrate nonahydrate with hydrazine in Igepal CO-520/cyclohexane reverse micelle solutions was investigated. Transmission Electron Microscope (TEM), X-ray Diffraction (XRD) and Vibration Sample Magnetometer (VSM) analyses showed that the resultant nanoparticles increased the molar ration of water to Igepal CO-520 as the concentrations of Nickel nitrate hexahyrate, Manganese (II) nitrate hexahydrate and Iron nitrate nonahydrate increased. The average size of the synthesized particles calcined at 600˚C for 2hrs was in the range of 20 nm to 30 nm, and the particle distribution was broadened. The phase of the synthesized particles was crystalline, and the magnetic behavior of the synthesized particles was superparamagnetism. The effect of the synthesis parameters of the molar ratio of water to surfactant and the calcination temperature was discussed.
        3,000원