In the post-tensioned concrete member, additional reinforcement is required to prevent failure in the anchorage zone. In this study, the details of reinforcement suitable for the anchorage zone of the post-tensioned concrete member using circular anchorage was proposed based on the experimental results. The tests were conducted with the compressive strength of concrete and reinforcement types as variables. The experimental results indicated that the additional reinforcement for the anchorage zone is required when the compressive strength of concrete is less than 17.5 MPa. U-shaped reinforcement shows most effective performance in terms of maximum strength and cracks patterns.
As an alternative to coupling beam in shear wall system, application of the damper which can dissipate energy is increasing. In this study, lintel beam type steel damper which is simple to construct and change depending on design load was proposed. Cyclic loading test was conducted to compare reinforced concrete coupling beam and lintel beam type steel damper. The test results showed that lintel beam type steel damper has higher initial stiffness and energy dissipation capacity than reinforced concrete coupling beam.
For evaluating equations of bursting force in different codes, comparative study of the formulas was conducted. Because the equations does not consider variables such as shape of anchorages, angle of tendons, and eccentricity, a relation between the bursting forces and the variables has to be analyzed. In this paper, therefore, a comparative analysis of bursting forces computed by equations in the codes and finite element analysis was performed. As a result, it could be figured out that bursting force equations in the local zone were determined by coefficient k.
The purpose of this study is to establish and examine the analytical methods based on FEA to predict the behavior of the precast prestressed concrete panels under blast loading. The precast prestressed concrete structures are on the rise, but there is little research in this regard explosion. In this paper, we set the variable to the three models. TNT 500 kg was an explosion in the standoff-distance 3m. In conclusion, the precast models damage was concentrated in the bonded portion. The concrete panels after an explosion occurred continuously deformed. But the including prestressed panels deformation occurs only at the beginning of the explosion were able to see the results.
This study proposed proposes a retrofitting method using an H‐beam frame to improve the seismic performance of non‐seismic designed reinforced concrete frames. To evaluate the seismic performance with the H‐beam frames, a cyclic lateral load test was performed and the experimental result was compared with the bared frame, and a masonry infilled RC frame. The results was were analyzed regarding aspects of the load‐displacement hysteresis behavior, effective stiffness, displacement ductility, and cumulative energy dissipation. AlsoIn addition, it was possible to prove both an increase of in the maximum load capacity, effective stiffness, and energy dissipation capacity using the H‐beam frame.
본 연구 결과 울금 에탄올 추출물이 DMBA에 의해 유도한 유선 암화과정에서 종양의 발생률과 종양수를 감소시킴을 확인하였다. 이러한 종양세포의 증식 억제 효과는 울금의 암 예방 효과에 대한 기본 메커니즘 중 하나이다. 앞으로 효과적인 투여 경로 및 조직 특이성을 검토하기 위하여 더 많은 연구가 필요하다고 사료된다.