검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 99

        3.
        2018.11 구독 인증기관·개인회원 무료
        To preserve the superior genetic resources and restore the endangered species, Somatic cell nuclear transfer (SCNT) has been used widely. In Korea, the research of dog cloning has made outstanding achievements including the production of the world`s first cloned dog. Sapsaree (Sapsalgae), the representative dog of Gyeongsan-si was designated as a Korea natural monument (No. 368). This male dog used in this study has azoospermia due to unknown cause. In this study, the aim was to confirm the cause of infertility in the cell donor dog and to evaluate the reproduction potential of dog cloning using infertile male dog by SCNT. First, to confirm the infertility of the cell donor dog, the reproductive history and the testis were evaluated. The breeding histology was not recorded in individual document. In histopathology, the Sertoli cell tumor was confirmed in biopsy of the cell donor dog after death. But, these tumors are predominantly in older dogs. Second, we produced the cloned dogs with the somatic cells of the infertile dog and the appearance was similar with the cell donor dog. Also, microsatellite analysis confirmed the genetic relationship between the cell donor and clone dogs. Third, the potential breeding capacity of the cloned dog was confirmed. In T4 assay, the normal dog (same age with cloned dogs), cell donor dog, and cloned dogs was investigated. The cell donor dog with azoospermia had very low T4 level, and cloned dogs showed higher level of T4 than normal dogs. In CASA, There was no significant difference in sperm motor ability between normal dogs and cloned dogs. As a result, cloned dogs produced by SCNT had no problem regarding the reproductive function of the testis. In AI experiment, the semen of clone dogs was used to fertilize a natural female bitch and was diagnosed pregnancy by ultrasonography. In total, 7 puppies were born by normal delivery (male: 3, female: 4). In conclusion, this study confirmed that the reproduction problem of non-genetic infertility can generate a normal descendant by SCNT. Also, the first successful research to restore infertile dogs was completed. Furthermore, SCNT would be useful for the restoration of endangered species and application of superior traits.
        18.
        2013.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We present a multi-dimensional reduction method of the surveyed cube database obtained using a single- dish radio telescope in Taeduk Radio Astronomy Observatory (TRAO). The multibeam receiver system installed at the 14 m telescope in TRAO was not optimized at the initial stage, though it became more stabilized in the following season. We conducted a Galactic Plane survey using the multibeam receiver system. We show that the noise level of the first part of the survey was higher than expected, and a special reduction process seemed to be definitely required. Along with a brief review of classical methods, a multi-dimensional method of reduction is introduced; It is found that the ‘background’ task within IRAF (Image Reduction and Analysis Facility) can be applied to all three directions of the cube database. Various statistics of reduction results is tested using several IRAF tasks. The rms value of raw survey data is 0.241 K, and after primitive baseline subtraction and elimination of bad channel sections, the rms value turned out to be 0.210 K. After the one-dimensional reduction using ‘background’ task, the rms value is estimated to be 0.176 K. The average rms of the final reduced image is 0.137 K. Thus, the image quality is found to be improved about 43% using the new reduction method.
        4,000원
        20.
        2012.06 구독 인증기관·개인회원 무료
        The reactive oxygen species (ROS) generated during the somatic cell transfer nuclear (SCNT) procedures may cause the mitochondrial dysfunction and DNA damage, which may result in restricts the reprogramming of SCNT embryos and play a key direct role in apoptosis. The present study was conducted to investigate the effect of antioxidant treatment during the SCNT procedures on the inhibition of mitochondria and DNA damages in bovine SCNT embryos. The reconstituted oocytes were treated with antioxidants of 25 μM β-mercaptoethanol (β-ME) or 50 μM vitamin C (Vit. C) during the SCNT procedures. In vitro fertilization (IVF) was performed for controls. Mitochondrial morphology and membrane potential (ΔΨ) were evaluated by staining the embryos with MitoTracker Red or JC-1. Apoptosis was analyzed by Caspase-3 activity assay and TUNEL assay, and DNA fragmentation was measured by comet assay at the zygote stage. Mitochondrial morphology of non-treated SCNT embryos was diffused within cytoplasm without forming clumps, while the IVF embryos and antioxidant treated SCNT embryos were formed clumps. The ΔΨ of β-ME (1.3±0.1, red/green) and Vit. C-treated (1.4±0.2, red/green) SCNT embryos were significantly higher (p<0.05) than that of non-treated SCNT embryos (0.9±0.1, red/ green), which similar to that of IVF embryos (1.3±0.1, red/green). Caspase-3 activity was not difference among the groups. TUNEL assay also revealed that little apoptosis was occurred in SCNT embryos as well as IVF embryos regardless of antioxidant treatment. Comet tail lengths of β-ME and Vit. C-treated SCNT embryos (337.8±23.5 μm and 318.7 ±27.0 μm, respectively) were shorter than that of non-treated SCNT embryos (397.4± 21.4 μm) and similar to IVF embryos (323.3±10.6 μm). These results suggest that antioxidant treatment during SCNT procedures can inhibit the mitochondrial and DNA damages of bovine SCNT embryos.
        1 2 3 4 5