검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1

        1.
        2023.05 구독 인증기관·개인회원 무료
        The current storage capacity of the spent nuclear fuel at the Kori unit 2 has reached approximately 94% saturation, excluding emergency core capacity. As South Korea has not yet constructed any interim storage facilities to store spent nuclear fuel, one of possible options is to install high density storage racks in spent fuel pool at the reactor site to increase its capacity. The high density storage rack is a technology developed to allow the storage to have more spent nuclear fuel than originally planned, while still ensuring safety. It achieves this by reducing the storage gap between the spent nuclear fuel. The purpose of this study is to investigate an appropriate storage capacity for spent fuel pool in the Kori unit 2 and the factors to be considered during the high density storage rack installation. Given that the Kori unit 2 is planning continued operation and Korea Hydro & Nuclear Power (KHNP) is preparing to install a temporary storage facility for spent nuclear fuel at the Kori nuclear site, it is reasonable to consider the installation of high density storage racks in the spent fuel pool as a storage solution for these issues. When evaluating the capacity of the spent fuel pool, the amount of spent nuclear fuel generated by other reactors in Kori nuclear site and the amount of spent nuclear fuel generated by continued operation of the Kori unit 2 should be taken into account. This study aims to consider these factors and evaluate the capacity of the spent fuel pool. Furthermore, when installing high density storage rack for the spent nuclear fuel, it should be noted that the existing storage racks at the Kori unit 2 are welded to the liner plate, which may require additional cutting work. Therefore, it is necessary to review the suitable method for the cutting work. Additionally, assuming that divers need to access the area near the storage racks or cutting & welding devices require radiation protection in the area, it is essential to analyze the expected radiation level with computational code and propose appropriate measures to limit work time or establish a work zone. Thus, this study evaluates appropriate capacity of spent fuel pool and work methods for the installation of high density storage rack in the spent fuel pool at the Kori unit 2. It is expected that this paper contributes to install high density storage racks in SFP safely.