검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 7

        1.
        2023.11 구독 인증기관·개인회원 무료
        Alpha activities can be used for categorization, transportation, and disposal of radioactive waste generated from the operation of nuclear facilities including nuclear power plants. In order to transport and dispose of such low- and intermediate-level radioactive waste (LILW) to the Wolsong LILW Disposal Center (WLDC) at Gyeongju, the gross alpha concentration of an individual drum should be determined according to the acceptance criteria. In addition, when the gross alpha concentration exceeds 10 Bq/g, the inventory of the comprising alpha emitters in the waste is to be identified. Gross alpha measurements using a proportional counter are usually straightforward, inexpensive, and high-throughput, so they are broadly used to assay the total alpha activity for environmental, health physics, and emergency-response assessments. However, several factors are thoughtfully considered to obtain a reliable approximate for the entire alpha emitters in a sample, which include the alpha particle energy of a particular radionuclide, the radionuclide that is used as a calibration standard, the uniformity of film in a planchet, time between sample collection and sample preparation, and time between sample preparation and counting. Korea Atomic Energy Research Institute (KAERI) have evaluated the inventory of radionuclides in low-level radioactive waste drums to send every year hundreds of them to the WLDC. In this presentation, we revisit the gross alpha measurement results of the drums transported to WLDC in the past few years and compare them with the concentrations of alpha emitters measured from alpha spectrometry and gamma spectrometry. This study offers an insight into the gross alpha measurement for radioactive waste regarding calibration source, self-absorption effect, composition of alpha emitters, etc.
        3.
        2022.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The decommissioning of nuclear facilities produces various types of radiologically contaminated waste. In addition, dismantlement activities, including cutting, packing, and clean-up at the facility site, result in secondary radioactive waste such as filters, resin, plastic, and clothing. Determining of the radionuclide content of this waste is an important step for the determination of a suitable management strategy including classification and disposal. In this work, we radiochemically characterized the radionuclide activities of filters used during the decommissioning of Korea Research Reactors (KRRs) 1 and 2. The results indicate that the filter samples contained mainly 3H (500–3,600 Bq·g−1), 14C (7.5–29 Bq·g−1), 55Fe (1.1– 7.1 Bq·g−1), 59Ni (0.60–1.0 Bq·g−1), 60Co (0.74–70 Bq·g−1), 63Ni (0.60–94 Bq·g−1), 90Sr (0.25–5.0 Bq·g−1), 137Cs (0.64–8.7 Bq·g−1), and 152Eu (0.19–2.9) Bq·g−1. In addition, the gross alpha radioactivity of the samples was measured to be between 0.32–1.1 Bq·g−1. The radionuclide concentrations were below the concentration limit stated in the low- and intermediatelevel waste acceptance criteria of the Nuclear Safety and Security Commission, and used for the disposal of the KRRs waste drums to a repository site.
        4,300원
        4.
        2022.10 구독 인증기관·개인회원 무료
        Combustion method has been widely used in the analysis of 3H and 14C in various types of radioactive wastes since X. Hou reported the analysis of 3H and 14C in graphite and concrete for decommissioning of nuclear reactor. In this work, it was demonstrated that the validation result of combustion method for the simultaneous analysis of 3H and 14C in non-combustible radioactive wastes. To validate the combustion method, 3H and 14C spiked to sea sand and soil were prepared and each simulated sample was combusted with the accordance to a combustion temperature program. The validation of combustion method was assessed by the radioactivity recovery, radioactivity deviation, and relative standard deviation of measured radioactivity. The results of radioactivity recovery, radioactivity deviation, and relative standard deviation of 14C were 100~105%, less than 7%, less than 5%, respectively. In addition, 3H showed about 90% of radioactivity recovery, less than 20% of radioactivity deviation, and less than 5% of relative standard deviation. It will be provided that the validation results of combustion method in detail.
        7.
        2013.06 KCI 등재 서비스 종료(열람 제한)
        This study is a basic study on the development of functional substances involved in obesity prevention, lipid metabolism, and immune regulation. Male Sprague-Dawley rats were fed a high-fat diet for 10 weeks. Allium monanthum extracts (AME) were administered orally to obesity-induced rats, and their lipid-lowering, antioxidative and various types of biological effects related to the immune system were examined. Blood free fatty acid and triglyceride concentrations decreased as the dose of AME increased. Total cholesterol and LDL cholesterol concentrations in the blood decreased as the dose of AME increased. The total cholesterol concentrations in the liver of the AME-treated groups were lower than the control group. The thiobarbituric acid reactive concentrations were lower in the plasma and liver of all AME-treated groups than the control group. Plasma AST and ALT activities did not show any significant differences among the treatment groups. IL-1β and IL-6 concentrations in the liver tended to decrease as the dose of AME increased. TNF-α and IL-10 concentrations did now show any significant differences compared to the control group. Lower expression levels of TNF-α, Apo-B and Apo-E genes were found in the AME-treated groups. Taken together, these results indicate that AME may show positive effects in lipid lowering, antioxidation and anti-inflammation.